Errata

Title & Document Type: 8711B/12B/13B/14B Network Analyzers Programmer's Guide

Manual Part Number: 08713-90004

Revision Date: September1995

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-
Packard's former test and measurement, semiconductor products ad chemical analysis
businesses are now part of Agilent Technologies. We have made no changes to this
manual copy. The HP XXXX referred to in this document is now the Agilent XXXX.
For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

WEe' ve added this manua to the Agilent website in an effort to help you support your
product. This manual provides the best information we could find. It may be incomplete
or contain dated information, and the scan quality may not be ideal. If we find a better
copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. Y ou will find any other available
product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide
you to any available information. Our service centers may be able to perform calibration
if no repair parts are needed, but no other support from Agilent is available.

Agilent Technologies

Programmer’s Guide

HP 8711B/12B/13B/14B
RF Network Analyzers

Notice

Firmware Revision

HP part number: 08713-90004
Printed in USA September, 1995

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this material,
including but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

This manual documents analyzers with firmware revisions B.03.50 and above.
Some features (and therefore commands) will not be available in analyzers
with earlier firmware revisions. For full compatibility, you can upgrade your
firmware to the latest version. Contact your nearest Hewlett-Packard sales or
service office for information.

©Copyright Hewlett-Packard Company 1995

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.
1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, USA

HP-IB Programming

This document is an introduction to programming your analyzer over the
Hewlett-Packard Interface Bus (HP-IB). Its purpose is to provide concise
information about the operation of the instrument under HP-IB control.

It provides some background information on the HP-IB and a tutorial
introduction using programming examples to demonstrate the remote
operation of the HP 8711. The examples are provided on two disks that are
included with this guide. Both disks contain the same examples written in
HP BASIC; only the disk format is different. These programs can run on the
analyzer’s internal controller (Option 1C2) or on an external controller.

e Example Programs Disk — DOS Format : part number 08712-10001
e Example Programs Disk — LIF Format : part number 08712-10002

You should become familiar with the operation of your network analyzer
before controlling it over HP-IB. This document is not intended to teach
programming or to discuss HP-IB theory except at an introductory level.
Related information can be found in the following references. Contact the
nearest HP sales office for ordering information. A list of HP sales and service
offices can be found in the “Specifications and Characteristics” chapter of the
User’s Guide.

e Information on making measurements with the analyzer is available in the
analyzer’s User’s Guide.

e Information on HP Instrument BASIC is available in the HP Instrument
BASIC User’s Handbook.

e Information on HP BASIC programming is available in the manual set for
the BASIC revision being used. For example: BASIC 6.0 Programming
Techniques and BASIC 6.0 Language Reference.

¢ Information on using the HP-IB is available in the Tuiorial Description of
the Hewlett-Packard Interface Bus (HP literature no. 5021-1927).

111

Introduction to HP-IB
Programming

Introduction to HP-IB Programming

HP-IB — the Hewlett-Packard Interface Bus — is a high-performance bus

that allows individual instruments and computers to be combined into
integrated test systems. The bus and its associated interface operations are
defined by the IEEE 488.1 standard. The IEEE 488.2 standard defines the
interface capabilities of instruments and controllers in a measurement system,
including some frequently used commands.

HP-IB cables provide the physical link between devices on the bus. There are
eight data lines on each cable that are used to send data from one device to
another. Devices that send data over these lines are called Talkers. Listeners
are devices that receive data over the same lines. There are also five control
lines on each cable that are used to manage traffic on the data lines and to
control other interface operations. Controllers are devices that use these
control lines to specify the talker and listener in a data exchange. When an
HP-IB system contains more that one device with controller capabilities,

only one of the devices is allowed to control data exchanges at any given
time. The device currently controlling data exchanges is called the Active
Controller. Also, only one of the controller-capable devices can be designated
as the System Controller, the one device that can take control of the bus
even if it is not the active controller. The network analyzer can act as a
talker, listener, active controller or system controller at different times.

HP-IB addresses provide a way to identify devices on the bus. The active
controller uses HP-IB addresses to specify which device talks and which
device listens during a data exchange. This means that each device’'s address
must be unique. A device’s address is set on the device itself, using either a
front-panel key sequence or a rear-panel switch.

To set the HP-IB address on the analyzer use the softkeys located in the

(sYSTEM OPTIONS) HP-IB menu. The factory default address for the analyzer
is 16.

1-2

Introduction to HP-IB Programming

. __|
NOTE
Throughout this manual, the following conventions are used:

Square brackets ([) are used to enclose a keyword that is optional or implied when
programming the command; that is, the instrument will process the command to have the same
effect whether the option node is omitted or not.

Parameter types (< >) are distinguished by enclosing the type name in angle brackets.

A vertical bar (]) can be read as “or” and is used to separate alternative parameter options.

1-3

Bus Structure

Data Bus

The data bus consists of eight lines that are used to transfer data from one
device to another. Programming commands and data sent on these lines is
typically encoded in the ASCII format, although binary encoding is often used
to speed up the transfer of large arrays. Both ASCII and binary data formats
are available to the analyzer. In addition, every byte transferred over HP-IB
undergoes a handshake to ensure valid data.

Control Lines

Handshake Lines

A three-line handshake scheme coordinates the transfer of data between
talkers and listeners. This technique forces data transfers to occur at the
speed of the slowest device, and ensures data integrity in multiple listener
transfers. With most computing controllers and instruments, the handshake is
performed automatically, which makes it transparent to the programmer.

The data bus also has five control lines that the controller uses both to send
bus commands and to address devices:

IFC Interface Clear. Only the system controller uses this line.
When this line is true (low) all devices (addressed or not)
unaddress and go to an idle state.

ATN Attention. The active controller uses this line to define
whether the information on the data bus is a command or is
data. When this line is true (low) the bus is in the command
mode and the data lines carry bus commands. When this
line is false (high) the bus is in the data mode and the data
lines carry device-dependent instructions or data.

1-4

SRQ

REN

EOIL

Introduction to HP-IB Programming
Bus Structure

Service Request. This line is set true (low) when a

device requests service: the active controller services the
requesting device. The analyzer can be enabled to pull the
SRQ line for a variety of reasons.

Remote Enable. Only the system controller uses this line.
When this line is set true (low) the bus is in the remote
mode and devices are addressed either to listen or talk.
When the bus is in remote and a device is addressed, the
device receives instructions from HP-IB rather than from its
front panel (pressing the Return to Local softkey returns
the device to front panel operation). When this line is set
false (high) the bus and all devices return to local operation.

End or Identify. This line is used by a talker to indicate the
last data byte in a multiple byte transmission, or by an
active controller to initiate a parallel poll sequence. The
analyzer recognizes the EQOI line as a terminator and it pulls
the EQOI line with the last byte of a message output (data,
markers, plots, prints, error messages). The analyzer does
not respond to parallel poll.

1-5

Sending Commands

Commands are sent over the HP-IB via a controller’s language system,
such as IBASIC, QuickBASIC or C. The keywords used by a controller to
send HP-IB commands vary among systems. When determining the correct
keywords to use, keep in mind that there are two different kinds of HP-IB
commands:

e Bus management commands, which control the HP-IB interface.
e Device commands, which control analyzer functions.

Language systems usually deal differently with these two kinds of HP-IB
commands. For example, HP BASIC uses a unique keyword to send each bus
management command, but always uses the keyword OUTPUT to send device
commands.

The following example shows how to send a typical device command:
OUTPUT 716;"CALCULATE :MARKER : MAXIMUM"

This sends the command within the quotes (CALCULATE : MARKER : MAXIMUM)
to the HP-IB device at address 716. If the device is an analyzer, the command
instructs the analyzer to set a marker to the maximum point on the data
trace.

1-6

HP-IB Requirements

Number of Interconnected
Devices:

Interconnection
Path/Maximum Cable Length:

Message Transfer Scheme:

Data Rate:

Address Capability:

Multiple Controller Capability:

15 maximum

20 meters maximum or 2 meters per device,
whichever is less.

Byte serial/ bit parallel asynchronous data
transfer using a 3-line handshake system.

Maximum of 1 megabyte per second over
limited distances with tri-state drivers.
Actual data rate depends on the transfer rate
of the slowest device involved.

Primary addresses: 31 talk, 31 listen. A
maximum of 1 talker and 14 listeners at one
time.

In systems with more than one controller
(like the analyzer system), only one can

be active at a time. The active controller
can pass control to another controller, but
only the system controller can assume
unconditional control. Only one system
controller is allowed. The system controller
is hard-wired to assume bus control after a
power failure.

1-7

Interface Capabilities

The analyzer has the following interface capabilities, as defined by the
IEEE 488.1 standard:

SH1 full Source handshake capability

AH1 full Acceptor handshake capability

16 basic Talker, Serial Poll, no Talk Only, unaddress if MLA
TEO no Extended Talker capability

L4 basic Listener, no Listen Only, unaddress if MTA

LEO no Extended Listener capability

SR1 full Service Request capability

RL1 full Remate/Local capability

bC1 full Device Clear capability

C1 System Controller capability

C2 send IFC and take charge Controller capability

C3 send REN Controller capability

c4l respond to SRQ

cel send IFC, receive control, pass control, pass control to self
C122 send IF messages, receive control, pass control

E2 tri-state drivers

oM full device trigger capability

PPO no parallel poll capability

1 only when an HP Instrument BASIC program is running

2 only when an HP Instrument BASIC program is not running

1-8

Programming Fundamentals

This section includes specific information for programming your network
analyzer. It includes how the analyzer interacts with a controller, how data
is transferred between the analyzer and a controller, and how to use the
analyzer’s status register structure to generate service requests.

Controller Capabilities

The analyzer can be configured as an HP-IB system controller or as
a talker/listener on the bus. To configure the analyzer, select either
the System Controller orthe Talker/Listener softkey in the

(SYSTEM OPTIONS) HP-IB menu.

The analyzer is not usually configured as the system controller unless it is the
only controller on the bus. This setup would be used if the analyzer only
needed to control printers or plotters. It would also be used if HP Instrument
BASIC was being used to control other test equipment.

When the analyzer is used with another controller on the bus, it is usually
configured as a talker/listener. In this configuration, when the analyzer is
passed control it can function as the active controller.

1-9

Introduction to HP-IB Programming
Programming Fundamentals

Device Clear (DCL)

Go To Local (GTL)

Interface Clear (IFC)

Response to Bus Management Commands

The HP-IB contains an attention (ATN) line that determines whether

the interface is in command mode or data mode. When the interface is

in command mode (ATN TRUE) a controller can send bus management
commands over the bus. Bus management commands specify which devices
on the interface can talk (send data) and which can listen (receive data).
They also instruct devices on the bus, either individually or collectively, to
perform a particular interface operation.

This section describes how the analyzer responds to the HP-IB bus
management commands. The commands themselves are defined by the
IEEE 488.1 standard. Refer to the documentation for your controller’s
language system to determine how to send these commands.

When the analyzer receives this command, it:

e (Clears its input and output queues.

e Resets its command parser (so it is ready to receive a new program
message).

e Cancels any pending *0PC command or query.

The command does not affect:

e I'ront panel operation.

e Any analyzer operations in progress (other than those already mentioned).

e Any instrument settings or registers (although clearing the output queue
may indirectly affect the Status Byte’s Message Available (MAV) bit).

This command returns the analyzer to local (front-panel) control. All keys on
the analyzer’s front-panel are enabled.

This command causes the analyzer to halt all bus activity. It discontinues
any input or output, although the input and output queues are not cleared.
It the analyzer is designated as the active controller when this command is
received, it relinquishes control of the bus to the system controller. If the
analyzer is enabled to respond to a Serial Poll it becomes Serial Poll disabled.

1-10

Local Lockout (LLO)

Parallel Poll

Remote Enahle (REN)

Introduction to HP-IB Pragramming
Programming Fundamentals

This command causes the analyzer to enter the local lockout mode, regardless
of whether it is in the local or remote mode. The analyzer only leaves the
local lockout mode when the HP-IB’s Remote Enable (REN) line is set FALSE.

Local Lockout ensures that the analyzer’s remote softkey menu (including the

Return to LOCAL softkey) is disabled when the analyzer is in the remote
mode. When the key is enabled, it allows a front-panel operator to return the
analyzer to local mode, enabling all other front-panel keys. When the key is
disabled, it does not allow the front-panel operator to return the analyzer to
local mode.

The analyzer ignores all of the following parallel poll commands:

Parallel Poll Configure (PPC).
Parallel Poll Unconfigure (PPU).
Parallel Poll Enable (PPE).
Parallel Poll Disable (PPD).

REN is a single line on the HP-IB. When it is set TRUE, the analyzer will
enter the remote mode when addressed to listen. It will remain in remote
mode until it receives the Go to Local (GTL) command or until the REN line is
set FALSE.

When the analyzer is in remote mode and local lockout mode, all front panel
keys are disabled. When the analyzer is in remote mode but not in local
lockout mode, all front panel keys are disabled except for the softkeys. The
remote softkey menu includes seven keys that are available for use by a
program. The eighth softkey is the Return to LBCAL key which allows a
front-panel operator to return the analyzer to local mode, enabling all other
front-panel keys.

Selected Device Clear
(SDC)

Serial Poll

Take Control Talker
(TCT)

Introduction to HP-IB Programming
Programming Fundamentals

The analyzer responds to this command in the same way that it responds to
the Device Clear (DCL) command.

When the analyzer receives this command it:

e (Clears its input and output queues.

e Resets its command parser (so it is ready to receive a new program
message).

e Cancels any pending *0PC command or query.

The command does not affect:

e I'ront-panel operation.

e Any analyzer operations in progress (other than those already mentioned).

e Any analyzer settings or registers (although clearing the output queue may
indirectly affect the Status Byte's MAV bit).

The analyzer responds to both of the serial poll commands. The Serial Poll
Enable (SPE) command causes the analyzer to enter the serial poll mode.
While the analyzer is in this mode, it sends the contents of its Status Byte
register to the controller when addressed to talk.

When the Status Byte is returned in response to a serial poll, bit 6 acts as the
Request Service (RQS) bit. If the bit is set, it will be cleared after the Status
Byte is returned.

The Serial Poll Disable (SPD) command causes the analyzer to leave the serial
poll mode.

It the analyzer is addressed to talk, this command causes it to take control

of the HP-IB. It becomes the active controller on the bus. The analyzer
automatically passes control back when it completes the operation that
required it to take control. Control is passed back to the address specified by
the *PCB command (which should be sent prior to passing control).

If the analyzer does not require control when this command is received, it
immediately passes control back.

1-12

Introduction to HP-IB Programming
Programming Fundamentals

HP-1B Queues

Message Exchange

The analyzer communicates with the controller and other devices on the
HP-IB using program messages and response messages. Program messages are
used to send commands, queries, and data to the analyzer.

Response messages are used to return data from the analyzer. The syntax for
both kinds of messages is discussed in Chapter 10.

There are two important things to remember about the message exchanges
between the analyzer and other devices on the bus:

e The analyzer only talks after it receives a terminated query (see “Query
Response Generation” later in this section).

e Once it receives a terminated query, the analyzer expects to talk before it is
told to do something else.

Queues enhance the exchange of messages between the analyzer and other
devices on the bus. The analyzer contains:

e An input queue.
e An error queue.
e An output queue.

Input Queue.

The input queue temporarily stores the following until they are read by the
analyzer’s command parser:

e Device commands and queries.
e The HP-IB END message (EOI asserted while the last data byte is on the
bus).

The input queue also makes it possible for a controller to send multiple
program messages to the analyzer without regard to the amount of time
required to parse and execute those messages. The queue holds up to
128 bytes. It is cleared when:

e The analyzer is turned on.
e The Device Clear (DCL) or Selected Device Clear (SDC) command is
received.

Introduction to HP-IB Programming
Programming Fundamentals

Error Queue.

The error queue temporarily stores up to 20 error messages. Each time
the analyzer detects an error, it places a message in the queue. When you
send the SYST:ERR? query, one message is moved from the error queue to
the output queue so it can be read by the controller. Error messages are
delivered to the output queue in the order they were received.

The error queue is cleared when:

e All the error messages are read using the SYST:ERR? query.
e The analyzer is turned on.
e The *CLS command is received.

Output Queue.

The output queue temporarily stores a single response message until it is read
by a controller. It is cleared when:

e The message is read by a controller.

e The analyzer is turned on.

e The Device Clear (DCL) or Selected Device Clear (SDC) command is
received.

Command Parser The command parser reads program messages from the input queue in the
order they were received from the bus. It analyzes the messages to determine
what actions the analyzer should take.

One of the parser’s most important functions is to determine the position of a
program message in the analyzer’s command tree (described in Chapter 10).
When the command parser is reset, the next command it receives is expected
to arise from the base of the analyzer’s command tree.

The parser is reset when:
e The analyzer is turned on.

e The Device Clear (DCL) or Selected Device Clear (SDC) command is
received.

e A colon immediately follows a semicolon in a program message. (For more
information see “Sending Multiple Commands” in Chapter 10.)

e A program message terminator is received. A program message terminator
can be an ASCII carriage return (“g) or newline character or the HP-IB
END message (EOI set true).

1-14

Introduction to HP-IB Programming

Query Response When the analyzer parses a query, the response to that query is placed in

Generation the analyzer’s output queue. The response should be read immediately after
the query is sent. This ensures that the response is not cleared before it is
read. The response is cleared when one of the following message exchange
conditions occurs:

¢ Unterminated condition — the query is not properly terminated with an
ASCII carriage return character or the HP-IB END message (EOI set true)
before the response is read.

¢ Interrupted condition — a second program message is sent before the
response to the first is read.

e Buffer deadlock — a program message is sent that exceeds the length of the
input queue or that generates more response data than fits in the output
queue.

Introduction to HP-IB Programming

Synchronizing the
Analyzer
and a Controller

Synchronizing the Analyzer
and a Controller

The IEEE 488.2 standard provides tools that can be used to synchronize the
analyzer and a controller. Proper use of these tools ensures that the analyzer
is in a known state when you send a particular command or query.

Device commands can be divided into two broad classes:

e Sequential commands.
e Overlapped commands.

Most of the analyzer’s commands are processed sequentially. A sequential
command holds off the processing of subsequent commands until it has been
completely processed.

Some commands do not hold off the processing of subsequent commands;
they are called overlapped commands.

2-2

Overlapped Commands

Typically, overlapped commands take longer to process than sequential
commands. For example, the :INITIATE: IMMEDIATE command restarts a
measurement. The command is not considered to have been completely
processed until the measurement is complete. This can take a long time with
a narrow system bandwidth or when averaging is enabled.

The analyzer has the following overlapped commands:

ABORt

CALibration:ZERO:AUTO
CONFigure[1]2]
DIAGnostic:CCONstants:LOAD
DIAGnostic:CCONstants:STORe:DISK
DIAGnostic:CCONstants:STORe:EEPRom
DIAGnostic:DITHer
DIAGnostic:SPUR:AV0id
HCOPy[:IMMediate]

INITiate[1]2] :CONTinuous
INITiate[1|2] [:IMMediate]
MMEMory :LOAD:STATe

OUTPut [:STATe]
PROGram[:SELected] :EXECute
SENSe[1]2] :AVERage:CLEar
SENSe[1]2] :AVERage :COUNt
SENSe[1]2] :AVERage [:STATe]
SENSe[1|2] :BWIDth[:RESolution]

SENSe[1]2]
SENSe[1]2]
SENSe[112]:
SENSe[1]2]
SENSe[112]:
SENSe[1]2]

:CORRection
:CORRection

CORRection

:CORRection

CORRection

:CORRection

SENSe:COUPle
DETector[:FUNCtion]
DISTance:STARt (Option 100 only)
DISTance:STOP (Option 100 only)
FREQuency:CENTer
FREQuency : MODE (Option 100 only)

SENSe[112]:
SENSe[112]:
SENSe[112]:
SENSe[112]:
SENSe[112]:

:COLLect [:ACQuirel]
:COLLect:ISTate[:AUTO]
:COLLect :METHod
:COLLect:SAVE
:CSET[:SELect]
[:STATe]

2-3

Synchronizing the Analyzer

and a Controller

Overlapped Commands

SENSe[1]|2] :FREQuency : SPAN

SENSe[1]2] :FREQuency : SPAN :MAX imum

SENSe[1]2] :FREQuency:STARt

SENSe[1]2] :FREQuency : STOP

SENSe[1]2] :FUNCtion

SENSe[1]2] :FUNCtion:SRL:SCAN[:IMMediate] (Option 100 only)
SENSe:R0SCillator:SOURce

SENSe[112] :STATe

SENSe[1]2] :SWEep :POINts

SENSe[1]2] :SWEep: TIME

SENSe[12] :SWEep: TIME: AUTO
SENSe:SWEep:TRIGger:S0URce

SOURce[1|2] :POWer [:LEVel] [:IMMediate] [:AMPLitude]
SYSTem:PRESet

TRACe[:DATA]

TRIGger[:SEQuence] :SOURce

The analyzer uses a No Pending Operation (NPO) flag to keep track of
overlapped commands. The NPO flag is reset to 0 when an overlapped
command has not completed (still pending). It is set to 1 when no overlapped
commands are pending. The NPO flag cannot be read directly but all of the
following common commands take some action based on the setting of the

flag.
*WAT

*0PC?

*0PC

Holds off the processing of subsequent commands until the NPO
flag is set to 1. This ensures that commands in the analyzer’s input
queue are processed in the order received.

The program continues to run and additional commands are received
and parsed by the analyzer (but not executed) while waiting for the
NPO flag to be set. Use of the *WAI command is demonstrated in
the SETUP example program.

Places a 1 in the analyzer’s output queue when the NPO flag is set
to 1. If the program is designed to read the output queue before it
continues, this effectively pauses the controller until all pending
overlapped commands are completed. Use of the *0PC? command is
demonstrated in the TRANCAL and REFLCAL example programes.

Sets bit 0 of the Standard Event Status event register to 1 when the
NPO flag is set to 1. The analyzer’s status registers can then be
used to generate a service request when all pending overlapped
commands are completed. This synchronizes the controller to the

2-4

Synchronizing the Analyzer
and a Controller

completion of an overlapped command, but also leaves the controller
free to perform other tasks while the command is executing.

NOTE

*0PC only informs you when the NPO flag is set to 1. It does not hold off the processing of
subsequent commands. No commands should be sent to the analyzer between sending the *0QPC
command and receiving the service request. Any command sent will be executed and may affect how
the instrument responds to the previously sent *0OPC.

The *CLS and *RST commands cancel any preceding *0PC command

or query. Pending overlapped commands are still completed, but their
completion is not reported in either the status register or the output queue.
Two HP-IB bus management commands — Device Clear (DCL) and Selected
Device Clear (SDC) — also cancel any preceding *0PC command or query.

NOTE

Use *WAI, *OPC? or *xOPC whenever overlapped commands are used. A recommended technique
is to send *WAT at the end of each group of commands.

2-5

CAUTION

Synchronizing the Analyzer
and a Controller

ALWAYS trigger an individual sweep (using *0PC? and waiting for the

reply) before reading data over the bus or executing a marker function. The
analyzer has the ability to process the commands it receives faster than it can
make a measurement. If the measurement is not complete when the data is
read or a marker search function is executed the results are invalid.

The command to use (in an IBASIC OUTPUT statement) is:

OUTPUT @Hp8711;"ABOR; :INIT:CONT OFF;:INIT;*0PC?"
ENTER @Hp8711;0pc_done

or another form of the :INITiate[1]|2] [:IMMediate] command combined
with the *0PC? query.

Refer to “Taking Sweeps” in Chapter 6 for more information.

2-6

Passing Control

Passing Control

When an external controller is connected to the analyzer with an HP-IB
cable, passing control may be needed to control devices such as printers and
plotters that are also connected on the HP-IB. For some operations the active
controller must pass control to the analyzer. When the analyzer completes
the operation, it automatically passes control of the bus back to the external
controller.

An example program, PASSCTRL, demonstrates passing control to the
analyzer. In this example program control is passed so the analyzer can
control a printer for hardcopy output. See Chapter 8, “Example Programs.”

NOTE

Pass Contral is not needed to control peripherals connected to the serial or parallel ports.

For smooth passing of control, take steps that ensure the following conditions
are met:

e The analyzer must know the controller’s address so it can pass control
back.

e The controller must be informed when the analyzer passes control back.

3-2

Passing Control

The following is a procedure for passing control:

1.

Send the controller’s HP-IB address to the analyzer with the *PCB
command.

Clear the analyzer’s status registers with the *CLS command.

Enable the analyzer’s status registers to generate a service request when
the Operation Complete bit is set. (Send *ESE with a value of 1 and *SRE
with a value of 32.)

Enable the controller to respond to the service request.

Send the command that requires control of the bus followed by the *0PC
command.

Pass control to the analyzer and wait for the service request. The service
request indicates that the command has been completed and control has
been passed back to the controller.

NOTE

For this procedure to work properly, only the command that requires control of the bus should be
pending. Other overlapped commands should not. For more information on overlapped commands, see
Chapter 2, “Synchronizing the Analyzer and a Controller.”

3-3

Passing Control

Data Types and Encoding

Data Types and Encoding

Data is transferred between the analyzer and a controller via the HP-IB data
lines, DIO1 through DIOS. Such transfers occur in a byte-serial (one byte

at a time), bit-parallel (8 bits at a time) manner. This section discusses the
following aspects of data transfer:

e The different data types used during data transfers.
e Data encoding used during transfers of numeric block data.

4-2

Data Types

The uses a number of different data types during data transfers. Data transfer
occurs in response to a query. The data type used is determined by the
parameter being queried. The different parameter types are described in the
“Parameter Types” section of Chapter 10. Data types described in this section
are:

Numeric Data.
Character Data
String Data
Expression Data
Block Data

Numeric Data

The analyzer returns three types of numeric data in response to queries:

NRI1 data Integers (such as +1, 0, -1, 123, -12345). This is the
response type for boolean parameters as well as some
numeric parameters.

NR2 data Floating point numbers with an explicit decimal point (such
as 12.3, +1.234, -0.12345).

NR3 data Floating point numbers in scientific notation (such as
+1.23E+5, +123.4E-3, -456.789E+6).

4-3

Data Types and Encoding
Data Types

Character Data

Character data consists of ASCII characters grouped together in mnemonics
that represent specific instrument settings (such as MAXimum , MINimum

or MLOGarithmic). The analyzer always returns the short form of the
mnemonic in upper-case alpha characters.

String Data

String data consists of ASCII characters. The string must be enclosed by a
delimiter, either single quotes (’This is string data.’) or double quotes
("This is also string data."). To include the delimiter as a character in
the string it must be typed twice without any characters in between. The
analyzer always uses double quotes when it returns string data.

Expression Data

Expression data consists of mathematical expressions that use character
parameters. When expression data is sent to the analyzer it is always
enclosed in parentheses (such as (IMPL/CH1SMEM) or (IMPL)). The analyzer
returns expression data enclosed in double quotes.

4-4

Data Types and Encoding
Data Types

Definite Block Length

Block Data

Block data are typically used to transfer large quantities of related data (like a
data trace). Blocks can be sent as definite length blocks or indefinite length
blocks — the instrument will accept either form. The analyzer always returns
definite length block data in response to queries.

The general form for a definite block length transfer is:
#<num_digits><num_bytes><data_bytes>

In the definite length block, two numbers must be specified. The single
decimal digit <num_digits> specifies how many digits are contained in
<num_bytes>. The decimal number <num_bytes> specifies how many data
bytes will follow in <data_bytes>. An example IBASIC (or HP BASIC)
statement to send ABC+XYZ as a definite block length parameter is shown,
note that the data block contains seven bytes (7) and only one digit is needed
to describe the block length 1.

OUTPUT 716;"#17ABC+XYZ"

NOTE

This analyzer will send an additional <©g> with EOl asserted for definite block length transfers. The
definite length block form for your analyzer is:
#<num_digits><num_bytes><data_bytes><“y><E0I>

<num_bytes> is the number of <data_bytes> without counting <“gr><E0I>.

4-5

Indefinite Block Length

Data Types and Encoding
Data Types

The general form for an indefinite block length transfer is:

#0<data_bytes><“g><E0I>

After the last data byte is sent, the indefinite length block must be terminated
by sending a carriage return or newline with EQOI asserted. This forces the
termination of the program message. An example IBASIC (or HP BASIC)
statement to send ABC+XYZ as an indefinite block length parameter is shown,
note that ,END is used to properly terminate the message.

OUTPUT 716;"#0ABC+XYZ" ,END

4-6

Data Encoding for Large Data Transfers

The FORMat :DATA command selects the type of data and the type of data
encoding that is used to transfer large blocks of numeric data between the
analyzer and a controller. There are two specifiers:

REAL specifies the block data type. Either the definite or indefinite
length syntax can be used. The block is transferred as
a series of binary-encoded floating-point numbers. Data
transfers of the REAL,64 data type are demonstrated in the
REALDATA example program.

INTeger specifies the block data type. Either the definite or indefinite
length syntax can be used. The block is transferred as an
array of binary-encoded data with each point represented
by a set of three 16-bit integers. This is the instrument’s
internal format — it should only be used for data that will be
returned to the instrument for later use. Data transfers of
the INTeger, 16 data type are demonstrated in the INTDATA
and LOADCALS example programs.

ASCii specifies the numeric data type (NR1, NR2 or NR3 syntax).
The data is transferred as a series of ASClIl-encoded numbers
separated by commas. ASCii formatted data transfers are
demonstrated in the ASCDATA example program.

Blocks that contain mixed data — both numbers and ASCII characters —
ignore the setting of FORMat :DATA. These blocks always transfer as either
definite length or indefinite length block data. The following commands
transfer blocks of mixed data:

PROGram[:SELected] :DEFine
SYSTem:SET

4-7

Data Types and Encoding
Data Encoding for Large Data Transfers

ASCII Encoding

The ANSI X3.4-1977 standard defines the ASCII 7-bit code. When an
ASClI-encoded byte is sent over the HP-IB, bits 0 through 6 of the byte

(bit 0 being the least significant bit)correspond to the HP-IB data lines DIO1
through DIO7. DIOS is ignored.

When ASCII encoding is used for large blocks of data, the number of
significant digits to be returned for each number in the block can be specified.
For example, the following command returns all numbers as NR3 data with 7
significant digits.

FORMat :DATA ASCii,7

Binary Encoding

When binary encoding is used for large blocks of data, all numbers in the
block are transferred as 32-bit or 64-bit binary floating point numbers or as
an array of 16-bit integers. The binary floating-point formats are defined in
the [EEE 754-1985 standard.

FORMat :DATA REAL, 32---selects the IEEE 32-bit format (not supported by
[BASIC or HP BASIC).

FORMat :DATA REAL,64.--selects the IEEE 64-bit format.
FORMat :DATA INTeger, 16---selects the 16-bit integer format.

4-8

Data Types and Encoding

Byte Swapping

PC compatibles frequently use a modification of the IEEE floating point
formats with the byte order reversed. To reverse the byte order for data
transfer into a PC, the FORMat :BORDer command should be used.

FORMat :BORDer SWAPped selects the byte-swapped format
FORMat :BORDer NORMal selects ihe siandard format

4-9

Data Types and Encoding

Using Status Registers

Using Status Registers

The analyzer’s status registers contain information about the condition of the
network analyzer and its measurements. This section describes the registers
and their use in HP-IB programming.

Example programs using the status registers are included in Chapter 8,
“Example Programs.” These programs include SRQ and GRAPHICS which
use service request interrupt routines, PASSCTRL which uses the status byte
to request control of the HP-IB and LIMITEST which uses the Limit Fail
condition register.

5-2

General Status Register Model

The analyzer’s status system is based on the general status register model
shown in Figure 5-1. Most of the analyzer’s register sets include all of the
registers shown in the model, although commands are not always available
for reading or writing a particular register. The information flow within a
register set starts at the condition register and ends at the register summary
bit (see Figure 5-2). This flow is controlled by setting bits in the transition
and enable registers.

Two register sets — the Status Byte and the Standard Event Status
Register — are 8-bits wide. All others are 16-bits wide, but the most
significant bit (bit 15) in the larger registers is always set to 0.

Condition Register { STATus:<mnemonic>:CONDition?)
Paositive Transition Filter { STATus:<mnemonic>:PTRansition
—— Negative Transition Filter { STATus:<mnemonic>:NTRansition)

Event Register { STATus:<mnemonic>[:EVENt]?)
Enable Register { STATus:<mnemonic>:ENABle)
Bit Weights

101 Bit O condition | O | I1 | | ?7 B
L1112 Bit 1 condition | 1 | Il | | B
12| 4 Bit 2 condition | 2 | Il | | 1 B
EE 5] i -]

4] 16 14 T[T L 1 o
5| 32 5 TIL]] e
6| 64 6 | T|L]] 5=
é ;25536 ;: § % : : BL(;; — To Summary Bit
9] 512 9 I B

[10] 1,024 [10] Tt | | 7z
(11 2,048 | TIL]] >

12| 4,096 2] Tt _ | =

[13] 8,192 [13] T|L | | 5

[14] 16,384 [14] T|L _ _ B

L15 | 32,768 Bit 15 condition 15 | Il L L “4 B

Figure 5-1. General Status Register Model

5-3

Using Status Registers
General Status Register Model

Condition Register

Condition registers continuously monitor the instrument’s hardware and
firmware status. Bits in a condition register are not latched or buffered, they
are updated in real time. When the condition monitored by a specific bit
becomes true, the bit is set to 1. When the condition becomes false the bit is
reset to 0. Condition registers are read-only.

Transition Registers

Transition registers control what type of change in a condition register will
set the corresponding bit in the event register. Positive state transitions

(0 to 1) are only reported to the event register if the corresponding positive
transition bit is set to 1. Negative state transitions (1 to 0) are only reported
if the corresponding negative transition bit is set to 1. Setting both transition
bits to 1 causes both positive and negative changes to be reported. Transition
registers are read-write, and are unaffected by *CLS (clear status) or queries.
They are reset to instrument default conditions at power up and after *RST
and SYSTem:PRESet commands.

Event Register

Event registers latch any reported condition changes. When a transition bit
allows a condition change to be reported, the corresponding event bit is set
to 1. Once set, an event bit is no longer affected by condition changes. It

remains set until the event register is cleared. Event registers are read-only.

An event register is cleared when you read it. All event registers are cleared
when you send the *CLS (clear status) command.

5-4

Using Status Registers
General Status Register Model

Enable Register

Enable registers control the reporting of events (latched conditions) to the
register summary bit. If an enable bit is set to 1 the corresponding event

is included in the logical ORing process that determines the state of the
summary bit. (The summary bit is only set to 1 if one or more enabled event
bits are set to 1.) Summary bits are recorded in the instrument’s status byte.
Enable registers are read-write and are cleared by *CLS (clear status).

Positive
Transition
Register

Enable
Register

I AND

To
—® OR AND Summary
Bit

Condition Event
Register Register

1 AND

Note:
The Event Register remains set until it is read
Negative or the ¥CLS command is sent.
Transition
Register

Figure b-2. Flow of information within a register set

5-5

How to Use Registers

There are two methods of accessing the information in status registers:
e The direct-read method.
e The service request (SRQ) method.

In the direct-read method the analyzer is passive. It only tells the controller
that conditions have changed when the controller asks the right question. In
the SRQ method, the analyzer is more active. It tells the controller when
there has been a condition change without the controller asking. Either
method allows you to monitor one or more conditions.

The following steps are used to monitor a condition with the direct read
method:

1. Determine which register contains the bit that monitors the condition.
2. Send the unique HP-IB query that reads that register.
3. Examine the bit to see if the condition has changed.

The direct-read method works well when it is not necessary to know

about changes the moment they occur. It does not work well if immediate
knowledge of the condition change is needed. A program that used this
method to detect a change in a condition would need to continuously read the
registers at very short intervals. The SRQ method is better suited for that
type of need.

5-6

The Service Request Process

The following steps are used to monitor a condition with the SRQ method:

1.
2.

4.

Determine which bit monitors the condition.

Determine how that bit reports to the request service (RQS) bit of the
Status Byte.

Send HP-IB commands to enable the bit that monitors the condition and to
enable the summary bits that report the condition to the RQS bit.

Enable the controller to respond to service requests.

When the condition changes, the analyzer sets its RQS bit and the HP-IB’s
SRQ line. The controller is informed of the change as soon as it occurs. The
time the controller would otherwise have used to monitor the condition can
now be used to perform other tasks. The controller’s response to the SRQ is
determined by the program being run.

5-7

Using Status Registers
The Service Request Process

Generating a Service Request

A service request is generated using the Status Byte. As shown in Figure 5-3,
the analyzer’s other register sets report to the Status Byte. Some of them
report directly while others report indirectly through other register sets.

from other Status Service
register Byte Request
sets register enable
register
(0]] 7z
|1] | o
]] 5
13| | (s
4] _ <
B 5 L B 8
ﬁ RQS [MsS ﬁ L -
- g e "
Service
Service Request
Request <———— Process
(SRQ)

Figure 5-3. Generating a Service Request

5-8

Using Status Registers
The Service Request Process

The process of preparing the analyzer to generate a service request, and the
handling of that interrupt when it is received by a program, are demonstrated
in the SRQ example program.

When a register set causes its summary bit in the Status Byte to change from
0 to 1, the analyzer can initiate the service request (SRQ) process. If both the
following conditions are true the process is initiated:

e The corresponding bit of the Service Request enable register is
also set to 1.

e The analyzer does not have a service request pending. (A service request is
considered to be pending between the time the analyzer’s SRQ process is
initiated and the time the controller reads the Status Byte register with a
serial poll).

The SRQ process sets the HP-IB’s SRQ line true and sets the Status Byte’s
request service (RQS) bit to 1. Both actions are necessary to inform the
controller that the analyzer requires service. Setting the SRQ line informs
the controller that some device on the bus requires service. Setting the RQS
bit allows the controller to determine that the analyzer was the device that
initiated the request.

When a program enables a controller to detect and respond to service
requests, it should instruct the controller to perform a serial poll when the
HP-IB’s SRQ line is set true. Each device on the bus returns the contents of
its Status Byte register in response to this poll. The device whose RQS bit is
set to 1 is the device that requested service.

NOTE

When the analyzer's Status Byte is read with a serial poll, the RQS bit is reset to 0. Other bits in the
register are not affected.

As implied in Figure 5-3, bit 6 of the Status Byte register serves two
functions; the request service function (RQS) and the master summary status
function (MSS). Two different methods for reading the register allow you to
access the two functions. Reading the register with a serial poll allows you to
access the bit’s RQS function. Reading the register with *STB allows you to
access the bit’s MSS function.

5-9

The Analyzer’s Status Register Sets

The analyzer uses eight register sets to keep track of instrument status:

Status Byte *STB? and *SRE
Device Status STATus:DEVice
Limit Fail STATus:QUEStionable:LIMit

Questionable Status STATus :QUEStionable
Standard Event Status *ESR? and *ESE

Measuring Status STATus:0PERation:MEASuring
Averaging Status STATus:0PERation:AVERaging
Operational Status STATus :0PERation

Their reporting structure is summarized in Figure 5-4. They are described in
greater detail in the following section.

NOTE

Register bits not explicitly presented in the following sections are not used by the analyzer. A query to
ane of these bits returns a value of 0.

5-10

Using Status Registers

The Analyzer's Status Register Sets

Device STaTus

Status Byte

Quesﬂonab\e Status

Output Queue

//ga Zj/
TIIL

%«m;mw ,moaﬁzn

7 U0 [ealbo 4 ﬂ

Operaﬂoma\ Status

Averagmg

A

-

75,8&3@
[ITT71171

%moa%ﬂ/w
TITTTTTT

7 /

Standard Event
Status Register

Measuring

7 j

Figure b-4. Analyzer Register Sets

5-11

Using Status Registers
The Analyzer's Status Register Sets

Bit Weights

Status Byte

The Status Byte register set summarizes the states of the other register sets
and monitors the analyzer’s output queue. It is also responsible for generating
service requests (see “Generating a Service Request” earlier in this chapter).
See Figure 5-5.

serial poll (bit 6 = Request Service)

*STB? (bit 6 = Master Summary Status)
*SRE
F‘;Jj

[0]] uZ

1 =
Device Status Summary [2] L z
Questionable Status Summary [3 | 1| =
Message Avallable |4 | | o
Standard Event Summary ~_[5 L g

Request Service/Master Summary Status [ras|mss = | X

Operational Status Summary 7 .,4

|

Figure b-b. The Status Byte Register Set

The Status Byte register set does not conform to the general status register
model described at the beginning of this chapter. It contains only two
registers: the Status Byte register and the Service Request enable register.
The Status Byte register behaves like a condition register for all bits except
bit 6. The Service Request enable register behaves like a standard enable
register except that bit 6 is always set to 0.

5-12

Using Status Registers
The Analyzer's Status Register Sets

Bits in the Status Byte register are set to 1 under the following conditions:

Device Status Summary

Questionable Status Summary

Message Available

Standard Event Status

Summary

Master Summary Status

Request Service

Operational Status Summary

(bit 2) is set to 1 when one or more enabled
bits in the Device Status event register are
set to 1.

(bit 3) is set to 1 when one or more enabled
bits in the Questionable Status event register
are set to 1.

(bit 4) is set to 1 when the output queue
contains a response message.

(bit 5) is set to 1 when one or more enabled
bits in the Standard Event Status event
register are set to 1.

(bit 6, when read by *STB) is set to 1 when
one or more enabled bits in the Status Byte
register are set to 1.

(bit 6, when read by serial poll) is set

to 1 by the service request process (see
“Generating a Service Request” earlier in
this chapter).

(bit 7) is set to 1 when one or more enabled
bits in the Operational Status event register
are set to 1.

5-13

Using Status Registers
The Analyzer's Status Register Sets

The commands used to read and write the Status Byte registers are listed
below:

SPOLL an IBASIC (or HP BASIC) command used in the service
request process to determine which device on the bus is
requesting service.

*STB? reads the value of the instrument’s status byte. This is a
non-destructive read, the Status Byte is cleared by the *CLS
command.

*SRE <num> sets bits in the Service Request Enable register. The current
setting of the Service Request Enable register is stored in
non-volatile memory. If *PSC has been set, it will be saved
at power on.

*SRE? reads the current state of the Service Request Enable
register.

5-14

Using Status Registers
The Analyzer's Status Register Sets

Device Status Register Set

The Device Status register set monitors the state of device-specific
parameters.

Bits in the Device Status condition register are set to 1 under the following
conditions:

Key Pressed (bit 0) is set to 1 when one of the analyzer’s front panel
keys has been pressed.

Limit Fail Register Set
The Limit Fail register set monitors limit test results for both measurement
channels.

Bits in the Limit Fail condition register are set to 1 under the following
conditions:

Channel 1 (bit 0) is set to 1 when limit testing in enabled and any point
Limit Failed on channel 1 fails the limit test.
Channel 2 (bit 1) is set to 1 when limit testing in enabled and any point
Limit Failed on channel 2 fails the limit test.

5-15

Using Status Registers
The Analyzer's Status Register Sets

Questionable Status Register Set

The Questionable Status register set monitors conditions that affect the
quality of measurement data.

Bits in the Questionable Status condition register are set to 1 under the
following conditions:

Limit Fail (bit 9) is set to 1 when one or more enabled bits in the Limit
Fail event register are set to 1.

Data (bit 10) is set to 1 when a change in the analyzer’s
Questionable configuration requires that new measurement data be taken.

5-16

Using Status Registers
The Analyzer's Status Register Sets

Bit Weights

]
@

[SEROVI—S e IR S R
Ny

Standard Event Status Register Set

The Standard Event Status register set monitors HP-IB errors and
synchronization conditions. See Figure 5-6

*ESE

’7 *ESR?

W

&\ Logical OR N

Operation Complete
Request Control

Query Error

Device Dependent Error
Execution Error
Command Error

User Request

Power On

Bit 5
Status Byte

el [ox] (@2l BN [OF] [he] B fanl

LLITTTT]

Figure b-6. The Standard Event Status Register Set

The Standard Event Status register set does not conform to the general status
register model described at the beginning of this section. It contains only two
registers: the Standard Event Status event register and the Standard Event
Status enable register. The Standard Event Status event register is similar

to other event registers, but behaves like a register set that has a positive
transition register with all bits set to 1. The Standard Event Status enable
register is the same as other enable registers.

Operation (bit 0) is set to one when the following two events occur
Complete (in the order listed):

e The *0PC command is sent to the analyzer.
e The analyzer completes all pending overlapped
commands.

5-17

Using Status Registers

The Analyzer's Status Register Sets

Request Control

Query Error
Device Dependent
Error

Execution Error

Command Error

Power On

(bit 1) is set to 1 when both of the following conditions
are true:

e The analyzer is configured as a talker/listener for HP-IB
operation.

e The analyzer is instructed to do something (such as
plotting or printing) that requires it to take control of
the bus.

(bit 2) is set when the command parser detects a query
error.

(bit 3) is set to 1 when the command parser detects a
device-dependent error.

(bit 4) is set to 1 when the command parser detects an
execution error.

(bit 5) is set to 1 when the command parser detects a
command error.

(bit 7) is set to 1 when you turn on the analyzer.

The commands used to read and write the Standard Event Status registers are

listed below:

*ESR? reads the value of the standard event status register.

*ESE <num> sets bits in the standard event status enable register. The
current setting of the standard event statue enable register
is stored in non-volatile memory. If *PSC has been set, it
will be saved at power on.

*ESE? reads the current state of the standard event status enable
register.

5-18

Using Status Registers
The Analyzer's Status Register Sets

Measuring Status Register Set

The Measuring Status register set monitors conditions in the analyzer’s
measurement process.

Bits in the Measuring Status condition register are set to 1 under the
following conditions:

Channel 1 Measuring (bit 0) is set to 1 while the analyzer is collecting
measurement data on channel 1.

Channel 2 Measuring (bit 1) is set to 1 while the analyzer is collecting
measurement data on channel 2.

Averaging Status Register Set

The Averaging Status register set monitors conditions in the analyzer’s
measurement process when the trace averaging function is in use.

Bits in the Averaging Status condition register are set to 1 under the following
conditions:

Channel 1 Averaging (bit 0) is set to 1 while the analyzer is sweeping on
channel 1 and the number of sweeps completed
(since “average restart”) is less than the averaging
factor.

Channel 2 Averaging (bit 1) is set to 1 while the analyzer is sweeping on
channel 2 and the number of sweeps completed
(since “average restart”) is less than the averaging
factor.

5-19

Using Status Registers
The Analyzer's Status Register Sets

Operational Status Register Set

The Operation Status register set monitors conditions in the analyzer’s
measurement process, disk operations, and printing/plotting operations. It
also monitors the state of the current HP Instrument BASIC program:.

Bits in the Operational Status condition register are set to 1 under the
following conditions:

Calibrating (bit 0) is set to 1 while the instrument is zeroing the
broadband diode detectors.

Settling (bit 1) is set to 1 while the measurement hardware is
settling.

Measuring (bit 4) is set to 1 when one or more enabled bits in the
Measuring Status event register are set to 1.

Correcting (bit 7) is set to 1 while the analyzer is performing a
calibration function.

Averaging (bit 8) is set to 1 when one or more enabled bits in the
Averaging Status event register are set to 1.

Hardcopy (bit 9) is set to 1 while the analyzer is performing a

Running hardcopy (print or plot) function.

Test Running (bit 10) is set to 1 when one of the analyzer’s internal

service tests is being run.

Program Running (bit 14) is set to 1 while an HP Instrument BASIC
program is running on the analyzer’s internal controller.

5-20

Using Status Registers

The Analyzer's Status Register Sets

STATus:PRESet Settings

Executing the STATus :PRESet command changes the settings in the enable
(ENAB), positive transition (PTR) and negative transition (NTR) registers. The
table below shows the settings after the command is executed.

Register Set ENABle PTRansition | NTRansition
STATus:DEVice all Os all 1s all Os
STATus:QUEStionable:LIMit all 1s all 1s all Os
STATus:QUEStionable all Os all 1s all Os
STATus:0PERation:MEASuring all 1s all Os all 1s
STATus:0PERation:AVERaging all 1s all Os all 1s
STATus:0PERation all Os all 1s all Os

5-21

Using Status Registers

Analyzer Register Set Summary

Device Status

I
<
@
=
a
«
i

\] Logical OR N

Any Key Pressed| O —»22
Any Softkey Pressed| 1 |—m
Any Ext. Keybd. Pressed| 2 —=%
Front Panel Knob Turned| 3 —={]_
R— .
=13 Questionable
— Status
15 —»7 o] 7
. . . I
Limit Fail 2 .
CH1 Limit Fail| O —»iz? 3
CH2 Limit Fail| 1 |—mf 4 4’%
CH1 Mkr Limit Fail Z—»% 54—&
CH2 Mkr Limit Fail| 3 —d_ 6 ©
L .13 7 s >,
o | o
= g
e 12 - Output Queue
15——7 104>7
11— Message Available }ﬁ Status Bvte
Standard Event } . Y
Status Register 15)
Operation Complete | O —»227
Request Control | 1 |—m
Query Error| 2 |—mf %
Device—Dependent Error | 3 —]
Execution Error| 4 — ,8
Cormand Error | 5 — g
User Request | 6 —
Power On | 7 4’7
Measuring Operational
CH1 Measuring| o 4,27 Status
CH2 Measuring| 1 Calibrating| 0 4>27
CHT SRL Scan| 2 |—wjj& Settling | 1 j—
CH2 SRL Scan| 3 b—wii (2 |
[[3 =
J [N g‘ [y —
- 5 ™
15— 6 ™
Carrecting| 7 —
S X
} 10

CH1 AverogimgT 7 Hcrdcopy m Progress —
. 11 l Service Test in Progress =
CH2 Averaging| 1 —
Tl =
12—
-1 =
T 13—
=12 i [
é’ Program Running | 14 ——m
- El s
15 —»7

* option 100 only

coblb

5-22

Trace Data Transfers

Trace Data Transfers

This chapter explains how to read (query) the measurement data trace from
the analyzer into your program. It also describes how to send data from your
program to the analyzer’s measurement arrays. Accessing the measurement
arrays is done using SCPI commands. If you are using IBASIC (Option 1C2),
you can also access the measurement arrays using high-speed subroutines.
Refer to the HP Instrument BASIC User’s Handbook for more details.

Figure 6-1 is a data processing flow diagram that represents the flow of
numerical data. The data passes through several math operations, denoted in
the figure by single-line boxes. Most of these operations can be selected and
controlled with the front panel CONFIGURE block menus. The data is stored
in arrays along the way, denoted by double-line boxes. These arrays are
places in the flow path where data is accessible via HP-IB. While only a
single flow path is shown, two identical paths are available, corresponding to
channel 1 and channel 2.

Raw Data Rati Error A X - Corrected
AB,R,AUX > aroe ™ Correction ™ Averaging Data
‘ L
Error
Coefficient C&”emd
Arrays emory —‘
Trace ™ Clectrical > —— ™| Formatted |[™ Offset —» Data Trace
Transform Format
Math - Delay - — [Arrays = Scale —m Memory Trace

\—» Markers

—— Limit Testing

cob2b

Figure 6-1. Numeric Data Flow Through the Network Analyzer

6-2

Querying the Measurement Trace Using BASIC

After making a measurement, you can read the resultant measurement trace
out of the analyzer using the SCPI query

"TRACE:DATA? CH1FDATA"

The BASIC program segment below shows how to read the trace from the
analyzer into an array in your program.

10 REAL Trace(1:201)

20 ASSIGN @Hp8711 TO 716

30 ! Take sweep here

40 OUTPUT @Hp8711;"FORM:DATA ASCII,5"

50 OUTPUT @Hp8711;"TRACE:DATA? CH1FDATA"

60 ENTER @Hp8711;Trace(*)

70 DISP Trace(1l),Trace(2),Trace(3),". . . ."

In this program, the TRACE:DATA? query returns all of the measurement
points as a single block. The analyzer computes the value for each point
using the measurement format selected by the [FORMAT] menu (CALC:FORM
SCPI command), and returns a block of data called the formatted data array.
The values of each point correspond to the values displayed on the screen, or
those shown in the marker readouts. The frequency stimulus value (X-axis) of
each point is not returned by the TRACE:DATA? query; only the measurement
response (Y-axis) values are returned.

When transferring the block of trace data, you may select either binary or
ASCII data encoding. This is explained in Chapter 4 in the section titled
“Data Encoding for Large Data Transfers.” Notice that the terms “encoding
format” and “measurement format” are not the same. The encoding

format determines how the numbers are represented as bytes, while the
measurement format corresponds to the meaning of the value of the numbers.

The easiest way to transfer a measurement data trace is to use ASCII data
encoding.

In the example above, the array Trace(1:201) contains 201 real (floating point)
numbers. The SCPI command "FORM:DATA ASCII,5" specifies ASCII data
encoding, with 5 significant digits. The command "TRACE:DATA? CH1FDATA"
instructs the analyzer to send the measurement trace. The ENTER statement
reads the measurement data sent by the analyzer into the Trace(1:201) array.

6-3

Trace Data Transfers
Querying the Measurement Trace Using BASIC

It is important to make sure that the Trace array declared in your program

is the same size as the measurement trace on the analyzer, or an error will
occur. The ENTER statement attempts to read data from the analyzer until

it completely fills the Trace array, at which point it expects to receive a
end-of-data terminator from the analyzer. To be safe, your program should
use the "SENS:SWE:POIN" SCPI command to set the number of measurement
data points to the desired value.

Refer to the example program ASCDATA in Chapter 8 for a complete
example.

10
20
30
40
50
60
70

@Smith Chart and Polar Formats

Each measurement point is represented by a single floating point number.
This is the case for all of the analyzer’s measurement formats except Smith
Chart and Polar in the HP 8712B and 8714B. When Smith Chart or Polar
format is selected, each point is represented by two numbers, the first one
being the real portion and the second being the imaginary portion of the
complex measurement value.

Below is a modified example program that will work when using Smith Chart
or Polar formats.

REAL Trace(1:201,1:2)

ASSIGN @Hp8711 TO 716

! Take sweep here

OUTPUT @Hp8711;"FORM:DATA ASCII,5"

OUTPUT @Hp8711;"TRACE:DATA? CH1FDATA"

ENTER @Hp8711;Trace(*)

DISP Trace(1,1),Trace(1,2),". . . .",Trace(201,1),Trace(201,2)

6-4 &> indicates HP 8712B/14B only

Querying the Measurement Trace Using SICL

This section includes a complete SICL C program that shows how to read the
measurement trace from the analyzer.

/**

*

*
*
*
*

This program takes a sweep, reads the trace, and prints it.
It uses SICL (Standard Instrument Control Library) to talk
to the analyzer over HP-IB.

On HP-UX, compile using: cc -Aa -o query_trace query_trace.c -lsicl

**/

#include <sicl.h> /* For iopen(), iprintf(), iscanf(), INST, ... */
#include <stdio.h> /* For printf() =*/

int main(void)

{

INST analyzer; /* Handle used to talk to analyzer */
float data_buf[1601]; /* measurement trace. 32-bit floats */
int num_trace_bytes;

int pt;

num_trace_bytes = sizeof(data_buf); /* Set to max allowable bytes */

/* Open the network analyzer at address 16 */
analyzer = iopen('"hpib,16");

/* Clear the bus */
iclear(analyzer);

/* Abort current sweep and put analyzer sweep in hold */
iprintf (analyzer, '"ABORT\n");
iprintf (analyzer, "INIT:CONT OFF\n");

/* Take one sweep, wait until done */
iprintf(analyzer, "INIT1\n");
iprintf (analyzer, '"*0PC?\n");

6-5

Trace Data Transfers
Querying the Measurement Trace Using SICL

iscanf (analyzer, "%*s");

/* Request the trace data in 32-bit floating point format */
iprintf (analyzer, "FORM:BORD NORM\n'");
iprintf(analyzer, "FORM:DATA REAL,32\n");

/* Query the trace, read into data_buf[]. */
iprintf (analyzer, "TRAC? CH1FDATA\n");
iscanf (analyzer, " #b)*c", &num_trace_bytes, &data_bufl[0]);

/* Print the trace values. */
for (pt = 0; pt < num_trace_bytes/sizeof(float); pt++) {

printf ("%4d hg\n", pt, data_buflptl);
+
/* Close analyzer and exit. */
iclose(analyzer);
return O;

6-6

Using Binary Data Encoding

The previous section describes how to query the measurement trace, and
transfer it into your program using ASCII encoding. Binary encoding can be
used for faster data transfers, as shown in the table below:

Table 6-1. Typical Trace Transfer Times (ms)

Number of Points | Binary | ASCII
51 38 60
201 59 199
401 98 390
1601 335 | 1510

When using binary data transfers, the entire trace is sent from the analyzer
to your program in a block called a definite length block. The details of block
data are described in detail in Chapter 4. The definite length block contains a
header and a data section. The header indicates how many bytes are in the
data section.

In order to read the definite length block, your program must first read
the header, and then read the data section. Refer to the example program
REALDATA in Chapter 8 for an example of how to do this.

In the REALDATA program, you will notice the following lines which read the
definite block header:

180 ENTER @Hp8711 USING "%,A,D";A$,Digits
190 ENTER @Hp8711 USING "% ,"&VAL$(Digits)&"D";Bytes

and these lines which read the data section:

200 ASSIGN @Hp8711;FORMAT OFF
210 ENTER @Hp8711;Datal(*)

6-7

Trace Data Transfers
Using Binary Data Encoding

Each measurement point in the data section is represented as 4 or 8 bytes
(32 or 64 bits), depending on whether single precision or double precision
numbers are requested. When using HP BASIC or IBASIC, you must select
double precision numbers to match BASIC’s “REAL” data type. Do this
using the SCPI command "FORM:DATA REAL,64". If you are using another
language that supports single precision data types, you can select single
precision using the SCPI command "FORM:DATA REAL,32". Languages such
as QuickBASIC and C have support for both single and double precision
floating point numbers.

When transferring data using binary encoding, you may need to reverse
the order of the bytes in each measurement point, since PCs frequently
store IEEE floating point numbers with the byte order reversed. To instruct
the analyzer to reverse the byte order of the data, send the command
"FORMAT :BORDer SWAPped" before querying the trace data.

6-8

Trace Data Transfers
Using Binary Data Encoding

Trace Data Transfer Sizes

The following table shows how many bytes are transmitted during trace
data transfers. The left column shows the format of the data, which you can
specify using the SCPI command Format :DATA. As you can see, the size of
the measurement point data and trace data varies as you change format.

Tahle 6-2. Size of Trace Data Transfers {in Bytes) Using the TRACE:DATA SCPI Command

Format Type Type of Data Single Measurement Point 201 Point Trace
(FORMat : DATA)
Real Complex Real Complex
REAL,32 IEEE 32-bit 4 8 809 1614
Floating Point
REAL 64 IEEE 64-bit 8 16 1614 3222
Floating Point
ASCILS ASCIl numbers 13 26 2613 5226
ASCII3 ASCIl numbers 11 22 211 4422
INT,16 Internal Binary — 6 — 1212

When transmitting data in “REAL” or “INT” format, a header is sent before
the data block. The header indicates the size of the data block. The header
size varies in length from 3 to 11 bytes. Refer to Chapter 4 for details on the
header.

Transmitting ASCII data requires no header. The ASCII values are separated
by commas, and a linefeed is sent after the last value. The sizes shown in the
table include the size of the comma(s) and terminating linefeed. Typical data
in ASCIL,5 format:

-1.2254E+000,+5.0035E-001,+4.5226E-001, ...

The analyzer stores its internal data with approximately 5 significant digits
of resolution. Using REAL,32 or ASCIL,5 format provides sufficient precision
for data transfers. However, REAL,64 may be necessary when using a
programming language which does not support IEEE 32-bit floating point.

6-9

Transferring Data with IBASIC

If you are using IBASIC, your IBASIC program can avoid the overhead of
using OUTPUT and ENTER to transfer trace data, and instead use the
analyzer’s built-in high-speed subprograms. These built-in subroutines let
you quickly move data between the analyzer’s measurement arrays and your
program’s data arrays. For example, to read the analyzer’s formatted data
array, use the following:

10 DIM Fmt(1:201)

20 INTEGER Chan

30 LOADSUB Read_fdata FROM "XFER:MEM 0,0"
40 Chan=1

50 Read_fdata(Chan,Fmt(x*))

Refer to the HP Instrument BASIC User’s Handbook for more details.

The table below compares the speed of IBASIC using high-speed transfer
subroutines with that of a fast external controller using the SCPI
TRACE:DATA? CH1FDATA query.

Table 6-3. Typical Trace Transfer Times (ms)

Number of Points | Controller Using Binary TRACE :DATA? | IBASIC Using Read_fdata
51 38 14
201 59 37
401 98 67
1601 335 251

6-10

Taking Sweeps

When making measurements and querying traces, your program should
perform the following steps:

1. Place the analyzer’s sweep in hold

2. Initiate a single sweep

3. Wait for the sweep to complete

4. Query the measurement trace

Use the following program lines perform these steps:

10 OUTPUT @Hp8711;"ABORT;:INIT1:CONT OFF"
20 OUTPUT @Hp8711;"INIT1"

30 OUTPUT @Hp8711;"*0PC?"

35 ENTER @Hp8711;0pc

40 OUTPUT @Hp8711;"TRACE:DATA? CH1FDATA"
45 ENTER QHp8711;Fmt(*)

If you query the measurement trace while the analyzer is in continuous
sweep, the query will still work, but the data may not be correct. Using INIT
and *OPC? ensures that a complete sweep has finished before you query the
measurement data. In many cases, you can also use the command “*WAI” in
place of the “*OPC?” query, replacing lines 30 and 35 above with:

30 OUTPUT @Hp8711;"*WAI"

However, there are cases where "xWAI" will produce incorrect results. One
case is when using IBASIC’s high-speed subprograms to query the trace data.
"xWAI" only ensures that the SCPI commands following the "*WAI" are not
executed until the commands before the "*WAI" are complete. Since IBASIC
subprograms don’t use SCPI commands to access the trace data, "*WAI" is
ineffective, and "*0PC?" should be used.

When using "*0PC?", the ENTER statement following the "*0PC?" will wait
until the previous SCPI commands are complete, preventing your program
from executing beyond the ENTER statement. When using "*WAI", your
program can continue to run and send SCPI commands, and the analyzer will
buffer them and act upon them in order.

For more details, refer to Chapter 2, “Synchronizing the Analyzer and a
Controller.”

CALC:DATA? versus TRACE:DATA?

The SCPI command "CALC1:DATA?" is functionally equivalent to the
command "TRACE:DATA? CH1FDATA'". The two can be used interchangeably
for trace queries of the formatted measurement data. The "TRACE:DATA"
command is more flexible, allowing you to query other measurement arrays
and to download data to measurement arrays.

6-12

Querying Single Data Points Using Markers

If you only need to query a single data point, you can use a marker query
instead of a trace query. The program segment below shows how to do this
using the SCPI command CALC:MARK.

10
20
30
40
50
60
70

ASSIGN @Hp8711 TO 716
! Take sweep here

OUTPUT @Hp8711;"CALC1:MARK ON" ! turn on marker
OUTPUT @Hp8711;"CALC1:MARK1:X 177 MH=z" ! set frequency
OUTPUT @Hp8711;"CALC1:MARK1:Y?" ! read marker

ENTER @Hp8711;Marker_y
DISP Marker_y

You can also use the CALC:MARK:FUNC:RES? query to return the results of a
bandwidth search. For example:

10
20
30
40
50

! Select -3 dB bandwidth

OUTPUT @Hp8711;"CALC:MARK:BWID -3"

! Get result of bandwidth search

OUTPUT @Hp8711;"CALC:MARK:FUNC:RES?"
ENTER @Hp8711;Bwidth,Center_freq,Q,Loss

For more information on using markers, refer to Chapter 8, “Example
Programs.”

6-13

Accessing Other Measurement Arrays

The preceding sections describe how to query the formatted data array using
the TRACE:DATA? query with the argument CH1FDATA. The formatted array
is the last array in the analyzer’s data processing chain, and is generally of
most interest.

The analyzer also allows you to query other measurement arrays which
are earlier in its data processing chain. Figure 6-2, below, shows the data
processing chain.

Raw Data Rati Error A X - Corrected
AB,R,AUX > atie ™ Correction ™ Averaging Data
‘ L
Error
Coefficient C&”emd
Arrays emory —‘
> Trace ™ Clectrical > —— ™| Formatted |[™ Offset —» Data Trace
Transform Format
Math - Delay - >] Arrays = Scale —m Memory Trace

\—» Markers
Limit Testing

Figure 6-2. Numeric Data Flow Through the Network Analyzer

cob2b

The first array is the Raw Data Array, which contains each of the separate
input components (A, B, R, X, Y) immediately after they are measured.
These arrays can be queried and set, but doing so is of limited use, since the
data values contained in the arrays are uncorrected, and are not directly
correlated to any meaningful reference, such as 0 dBm.

6-14

Trace Data Transfers
Accessing Other Measurement Arrays

The Error Coefficient Arrays contain default correction values or values
created during a measurement calibration. These arrays can be queried

and set, but care should be exercised in setting them since incorrect
measurements may result. If you wish to apply your own corrections in
addition to the analyzer’s current correction, the best technique is to use the
Corrected Memory array and the Data/Memory feature, explained below.

The Corrected Data array contains the results of the currently selected
measurement (Transmission, Reflection, etc.) after error correction and
averaging have been applied. The measurement data in these arrays is
represented as complex number pairs. When measuring the transmission
response of a through cable, the magnitude of the complex numbers will be
very close to 1.0. When measuring an open circuit, the magnitude of the
complex numbers will be very close to 0.0. When measuring an amplifier, the
magnitude of the complex numbers will be greater than 1.0.

The Corrected Memory array is filled with a copy of the Corrected Data array
when the Data —> Memory operation is performed. It can be used to apply
a gain correction to the measured data. This is described in the following
section.

The Formatted Data array contains the measurement data after it has been
formatted using the format selected by the [FORMAT] menu. Querying the
Formatted Data array is described in detail at the beginning of this chapter.
You can also download data to this array, and the analyzer will display the
data using the current Scale and Reference values.

6-15

Applying Gain Correction Using the
Memory Trace

The Corrected Memory array is filled with a copy of the Corrected Data array
when the Data —> Memory operation is performed. By setting the analyzer
to perform Data/Memory trace math, you can apply your own correction
factor to the measurement data trace by filling the Corrected Memory array
with the appropriate complex numbers.

In general, you should use the analyzer’s calibration feature to correct for
errors in your system. However, there may be cases where you wish to
simulate the effect of adding a cable in series with your DUT, and observe
how this imaginary cable will attenuate the measured response versus
frequency. Or you may wish to apply an absolute offset to simulate the effect
of adding or removing a pad from the measurement. These simulations are
easily accomplished using the Corrected Memory array and the Data/Memory
feature.

The Corrected Data and Memory arrays contain complex linear data, as
opposed to logged data. When displaying the traces using Lin Mag format,
the result of the Data divided by Memory operation (Data/Mem) will be

to divide each point of the data trace by each point of the memory trace.
When displaying data in Log Mag format, the result of Data/Memory will be
equivalent to subtracting the Log Mag value of the Memory trace from that of
the Data trace.

6-16

Trace Data Transfers
Applying Gain Correction Using the
Memoary Trace

The following example BASIC code segment shows how to download a
complex array from your program to the analyzer’s Memory trace. The
program’s “Mem” array is initialized with the proper values such that when
the analyzer computes Data divided by Memory, the desired increasing gain
will be applied.

100 REAL Mem(1:201,1:2)

110 ASSIGN @Hp8711 TO 716

120 ! Fill memory array (denominator in Data/Mem)

130 ! with values that will result in an

140 ! upward sloping gain factor vs. frequency.

150 ! Used to compensate for cable loss vs. frequency
160 ! Adds 0 dB of gain at start freq; 3 dB at stop freq
170 FOR Pt=1 TO 201

180 Gain_factor_db=3.0%(Pt — 1)/200 ! 0..3 dB Power
190 Gain_factor_lin=10"(Gain_factor_db/20)

200 Mem(Pt,1)=1.0/Gain_factor_lin ! real

210 Mem(Pt,2)=0.0 ! imag

220 NEXT Pt

230 ! Download to the memory trace

240 OUTPUT @Hp8711;"FORM:DATA ASCII"

250 OUTPUT @Hp8711;"TRACE:DATA CH1SMEM"; ! Note the ";"
260 FOR Pt=1 TO 201

270 FOR I=1 TO 2

280 QUTPUT @Hp8711;",";Mem(Pt,I); ! Note the ";"
290 NEXT I

300 NEXT Pt

310 OUTPUT @Hp8711;"" ! Send linefeed

320 OUTPUT @Hp8711;"CALC1:MATH (IMPL/CH1SMEM)" ! Data/Mem

The example above downloads data to the corrected memory array. The data
is sent by the program to the analyzer using ASCII encoding. The data is
sent as ASCII characters, separated by commas. The analyzer accepts the
comma separated list of numbers until it receives a linefeed to terminate

the command. The program uses semicolons at the end of some OUTPUT
statements to avoid sending a linefeed until all of the data has been sent.
After the last number is sent, the program sends a linefeed, and the analyzer
accepts the data.

Remember, for faster transfers, use binary data encoding instead of ASCII.

6-17

Performing Your Own Data Processing

After the analyzer has made a measurement, you can read the measurement
trace and perform your own post-processing on it, and display the result on
the screen. This is done using these steps:

1. Initiate a sweep

2. Wait for the sweep to finish

3. Read the measurement data into an array in your program

4. Perform your post-processing on the measurement data

5. Write (download) the post-processed data to the analyzer’s memory trace.

You may want to instruct the analyzer to display only the memory trace and
not the data trace, so that only your post-processed data is seen.

6-18

Trace Data Transfers
Performing Your Own Data Processing

The program below demonstrates how to perform data post-processing. It
takes the measurement data and reverses it, such that the low frequency
data is displayed on the right end of the trace, and the high frequency data is
displayed on the left.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
235
240
250
260
270
280
290

! Display the measurement data backwards
REAL Fmt(1:201)

ASSIGN @Hp8711 TO 716

|

QUTPUT @Hp8711;"FORM:DATA ASCII"
OUTPUT @Hp8711;"ABOR;INIT:CONT OFF;*WAI"
OUTPUT @Hp8711;"DISP:WIND:TRAC1 OFF;TRAC2 ON"
LOOP
! Take sweep
QUTPUT @Hp8711;"INIT1;*WAIL"
! Read the trace from the formatted data array
QUTPUT @Hp8711;"TRACE:DATA? CH1FDATA"
ENTER @Hp8711;Fmt ()
! Download the trace, backwards,
! to the formatted memory array

OUTPUT @Hp8711;"TRACE:DATA CH1FMEM"; ! Note the ";"
FOR Pt=1 TO 201
QUTPUT @Hp8711;",";Fmt(202-Pt); ! Note the ";"
NEXT Pt
OUTPUT @Hp8711;"" ! Send linefeed
END LOOP

This example program uses ASCII trace data transfers. Higher speed can be
achieved using binary data transfers. If using IBASIC, high-speed subroutines
can be used for even greater performance. Refer to the IBASIC Handbook for
details.

6-19

Downloading Trace Data Using
Binary Encoding

Data traces can be downloaded to the analyzer using binary encoding.
Using binary encoding is faster than using ASCII encoding. As mentioned
in Chapter 4, the binary encoded trace is transferred as a block; the block
containing a header and a data section. There are two different types of
blocks that can be used: a definite length block, and an indefinite length
block.

To send trace data using a definite length block, your program must calculate
the number of bytes in the data segment of the block, and create a block
header which tells the analyzer how many bytes are in the data segment.

For example, if you are sending a trace with 201 data points and using 64-bit
floating point numbers for each data point (“FORM:DATA REAL,647), the
block’s data segment will contain 1608 bytes (201 points * 8 bytes/point).
The header characters for a 1608 byte block are: “#41608”. The first digit
after the “#”, “4” tells how many following digits are used to specify the size.
In this case, 4 digits follow, and those digits are “1608”, meaning that the
block contains 1608 bytes.

When you send a definite length block to the analyzer, the analyzer will will
read the data segment bytes, stopping when it receives the number specified
in the block header.

To send trace data using an indefinite length block, your program simply
sends a block header of “#0”, followed by the data segment. After sending
the data segment, your program must terminate the data block by sending an
EOI. The analyzer will read the data segment bytes, stopping when it receives
an EOL To send an EOI using BASIC, you can use the statement:

OUTPUT @Hp8711;END

6-20

Internal Measurement Arrays

The following sections describe the sequence of math operations and the
resulting data arrays as the measurement information flows from the raw
data arrays to the display. This information explains the measurement arrays
accessible via HP-IB.

Figure 6-3 is a data processing flow diagram that represents the flow of
numerical data. The data passes through several math operations, denoted in
the figure by single-line boxes. Most of these operations can be selected and
controlled with the front panel CONFIGURE block menus. The data is stored
in arrays along the way, denoted by double-line boxes. These arrays are
places in the flow path where data is accessible via HP-IB. While only a
single flow path is shown, two identical paths are available, corresponding to
channel 1 and channel 2.

Raw Data i, Error A X - Corrected
A,B,RAUX ™ Ratio ™ Correction |] Averaging Data
‘ L
Error
Coefficient C&”emd
Arrays emory —‘
> Trace ™ Clectrical > —— ™| Formatted |[™ Offset —» Data Trace
Transform Format
Math - Delay - >] Arrays = Scale —m Memory Trace

\—» Markers

—— Limit Testing

cob2b

Figure 6-3. Numeric Data Flow Through the Network Analyzer

6-21

Trace Data Transfers
Internal Measurement Arrays

Raw Data Arrays

These arrays are linear measurements of the inputs used in the selected
measurement. Note that these numbers are complex pairs. These arrays are
directly accessible via HP-IB and referenced as CH[1|2] AFWD, CH[1|2]BFWD
and CH[1|2]RFWD.

Tahle 6-4. Raw Data Arrays

Selected Measurement Raw Arrays
Transmission [B/R) B = CH[1|2]BFWD, R = CH[1|2]RFWD
Reflection (A/R] A = CH[1|2]AFWD, R = CH[1|2]RFWD
A A = CH[1[2]AFWD
B B = CH[1|2]BFWD
R R = CH[1|2]RFWD
Power (B*] B* = CH[1|2]BFWD
Conversion Loss (B*/R*) B* = CH[1|2]1BFWD, R* = CH[1|2]RFWD
R* R* = CH[1|2]RFWD
AM Delay [Y/X) Y = CH[1|2]BFWD, X = CH[1|2]RFWD
X X = CH[1[2]RFWD
Y Y = CH[1[2]BFWD
Y/R* Y = CH[1|2]BFWD, R* = CH[1|2]RFWD
YIX, XY Y = CH[1|2]BFWD, X = CH[1|2]RFWD

NOTE

Raw data for AUX INPUT is not available via HP-IB. Use the corrected data array to access AUX
INPUT data.

6-22

Trace Data Transfers
Internal Measurement Arrays

Ratio Calculations

These are performed if the selected measurement is a ratio (e.g. A/R or B/R).
This is simply a complex divide operation. If the selected measurement is
absolute (e.g. A or B), no operation is performed.

Error Correction

Error correction is performed next if correction is turned on. Error correction
removes repeatable systematic errors (stored in the error coeflicient arrays)
from the raw arrays. The operations performed depend on the selected
measurement type.

Error Coefficient Arrays

The error coefficient arrays are either default values or are created during
a measurement calibration. These are used whenever correction is on.
They contain complex number pairs, and are accessible via HP-IB and are
referenced as CH[1|2]SCORR1, CH[1|2]1SCORR2 and CH[1|2]SCORR3.

6-23

Trace Data Transfers

Internal Measurement Arrays

Tahle 6-5. Error Coefficient Arrays

Selected Measurement

Error Coefficient Arrays

Transmission (B/R]

CH[1|2]SCORR1 = Response
CH[112]SCORR2 = Isolation

Reflection {A/R]

CH[112]SCORR1 = Directivity
CH[1|2]SCORR2 = Source Match
CH[112]SCORR3 = Tracking

Broadband Internal

CH[1|2]SCORR1 = R* Response

NOTE

These arrays do not apply to Broadband External measurements.

6-24

Trace Data Transfers
Internal Measurement Arrays

Averaging

Averaging is a noise reduction technique. This calculation involves taking
the complex exponential average of several consecutive sweeps. This
averaging calculation is different than the System Bandwidth setting. System
Bandwidth uses digital filtering, applying noise reduction to the measured
data before it is stored into the Raw Data Arrays.

Corrected Data Arrays

The combined results of the ratio, error correction and averaging operations
are stored in the corrected data arrays as complex number pairs. These
arrays are accessible via HP-IB and referenced as CH[1|2] SDATA.

Corrected Memory Arrays

If the Data—>Mem or Normalize operations are performed, the corrected
data arrays are copied into the corrected memory arrays. These arrays are
accessible via HP-IB and referenced as CH[1|2]SMEM.

6-25

Trace Data Transfers
Internal Measurement Arrays

Trace Math Operation

This selects either the corrected data array, or the corrected memory array, or
both to continue flowing through the data processing path. In addition, the
complex ratio of the two (Data/Memory) can also be selected. If memory is
displayed, the data from the memory arrays goes through exactly the same
data processing flow path as the data from the data arrays.

@ Electrical Delay

This block adds or subtracts phase, based on the settings of Phase Offset,
Electrical Delay, and Port Extension. The Electrical Delay and Port Extension
features add or subtract phase in proportion to frequency. This is equivalent
to “line stretching” or artificially moving the measurement reference plane.
(See the HP 8712B/14B User’s Guide for more details on these features.)

Transform (Option 100 only)

This block converts frequency domain data into distance domain, or into an

SRL impedance value when measuring fault location or SRL. The transform

employs an inverse fast Fourier transform (FF'T) algorithm to accomplish the
conversion.

6-26 & indicates HP 8712B/14B only

Trace Data Transfers

Formatting

This converts the complex number pairs into a scalar representation for
display, according to the selected format (e.g. Log Mag, SWR, etc). These
formats are often easier to interpret than the complex number representation.
Note that after formatting, it is impossible to recover the complex data.

Formatted Arrays

The results so far are stored in the formatted data and formatted memory
arrays. It is important to note that marker values and marker functions are
all derived from the formatted arrays. Limit testing is also performed on the
formatted arrays. These arrays are accessible via HP-IB and referenced as
CH[1|2]FDATA and CH[1|2]FMEM.

Offset and Scale

These operations prepare the formatted arrays for display. This is where the
reference position, reference value, and scale calculations are performed, as
appropriate for the format.

6-27

Trace Data Transfers

Using Graphics

Using Graphics

The analyzer has a set of user graphics commands that can be used to create
graphics and messages on the display. The GRAPHICS example program uses
some of these commands to draw a simple setup diagram. These commands,
listed below, are of the form:

DISPlay:WINDow[1|2]10] :GRAPhics:<mnemonic>.

The number specified in the WINDow part of the command selects where the
graphics are to be written.

WINDowl draws the graphics to the channel 1 measurement screen.
(This is the default if no window is specified in the
mnemonic.)

WINDow?2 draws the graphics to the channel 2 measurement screen.

WINDow10 draws the graphics to an IBASIC display partition. (This
window is only available on instruments with IBASIC —
Option 1C2.)

|
NOTE

When graphics commands are used to write directly to a measurement screen they write to the static
graphics plane (the same plane where the graticule is drawn). There is no sweep-to-sweep speed
penalty once the graphics have been drawn.

7-2

Using Graphics

Unless otherwise specified, the graphics commands listed below start at the
current pen location. All sizes are dimensioned in pixels.

DISPlay:WINDow[1|2110] :GRAPhics:CIRCle <y_radius>
DISPlay:WINDow[1|2110] :GRAPhics:CLEar
DISPlay:WINDow[1|2]10] :GRAPhics:COLor <pen>

e color choices are: O for erase, 1 for bright, 2 for dim
DISPlay:WINDow[1|2110] :GRAPhics[:DRAW] <new_x>,<new_y>
DISPlay:WINDow[1]2]10] :GRAPhics:LABel <string>
DISPlay:WINDow[1|2]10] :GRAPhics:LABel:FONT

e font choices are: SMALL, HSMall, NORMal, HNORmal, BOLD, HBOL,
SLANt, HSLant

(H as the first letter of the font name indicates highlighted text - inverse
video).

DISPlay:WINDow[1|2]10] :GRAPhics:MOVE <new_x>,<new_y>
DISPlay:WINDow[1|2]10] :GRAPhics:RECTangle <width>,<height>
DISPlay:WINDow[112]10]:GRAPhics:STATe?

NOTE

There are more screen pixels in the “X” direction than in the “Y”" direction. The CIRCle graphics
command compensates for this by drawing an ellipse using a larger X-radius than Y-radius.

7-3

Window Geometry

Even though there are only three graphics windows, these windows can have
different sizes and locations.

The size and location of the graphics window are determined by the display
configuration currently in use — split screen measurements, full screen
measurements, and full or partial IBASIC display partitions will affect the
dimensions of the graphics window in use.

The sizes of the different graphics windows are listed below.

e Channel 1 or channel 2 full screen measurement: width=801 pixels,
height=321 pixels.

e Channel 1 or channel 2 split screen measurement: width=801 pixels,
height=161 pixels.

e IBASIC full screen display: width=861 pixels, height=352 pixels.
e [BASIC upper display: width=861 pixels, height=160 pixels.
e [BASIC lower display: width=861 pixels, height= 158 pixels.

There is a set of queries that can be used to determine the size and location
of the display window in use.

These queries, listed below, return the width and height of the window or the
absolute location of its lower left or upper right corners. All the coordinates
and sizes are dimensioned in pixels.

DISPlay:WINDow[1|2]10] :GEOMetry:LLEFt?
DISPlay:WINDow[1]2]10] :GEOMetry:SIZE?
DISPlay:WINDow[1|2]10]:GEOMetry:URIGht?

NOTE

The origin of EVERY graphics window is its lower left corner. The locations returned in response to
the LLEFt and URIGht are relative to the ABSOLUTE origin of the entire display, NOT to the
graphics window

7-4

The Graphics Buffer

The analyzer has a graphics buffer that is used to refresh the graphics display
if needed. When the buffer is full, additional graphics can still be drawn —
BUT they will not be refreshed. The graphics buffer can be turned on and

off using the following command (which is used in the GRAPHICS example
program).

DISPlay:WINDow:GRAPhics:BUFFer[:STATe] <ON|OFF>
The graphics buffer will hold up to:

500 lines

40 circles

40 rectangles

50 strings (60 characters long)

Use the following command to clear the graphics buffer and user-graphics
display.

DISPlay:WINDow:GRAPhics:CLEar

NOTE

Only graphics that can be refreshed will be printed or plotted. If you intend to print or plot your
graphics, make sure they will fit within the graphics buffer.

7-5

Using Graphics

Example Programs

Example Programs

The example programs listed in this manual are all written in IBASIC

(HP Instrument BASIC). An optional internal controller can be purchased
with your analyzer (option 1C2). This controller runs IBASIC directly on the
analyzer. It controls the analyzer over an internal interface bus that operates
the same way as the external HP-IB interface. For more information about
IBASIC refer to the HP mstrument BASIC User’s Handbook.

IBASIC is a programming language that developed from HP BASIC. Because
of this relationship, programs written for IBASIC can be run on external
controllers that run HP BASIC.

The example programs are provided on two disks that are included with the
network analyzer. Both disks contain the same examples written in IBASIC:
only the disk format is different. Because the analyzer’s internal 3.5” disk
drive is designed to be both DOS and LIF compatible, either disk can be used
to supply programs for the analyzer’s internal IBASIC controller.

Example Programs Disk — DOS Format HP part number 08712-10001
Example Programs Disk — LIF Format HP part number 08712-10002

Because the examples are designed to run in different environments, the
setup at the beginning of each program must determine the operating
environment and properly set the analyzer’s HP-IB address. In these
examples, the internal IBASIC controller uses the address 800 when
communicating with the analyzer (the internal HP-IB is at select code 8).
The default address of 716 is used when the programs are being run on an
external controller.

A version of the following lines is included in all of the example programes.
The use of the Internal (internal-controller) flag varies due to differences in
the programs needs.

8-2

10
20
30
40

50
60
70

80

90

IF POS(SYSTEM$("SYSTEM ID"),"HP 871'") THEN
ASSIGN @Hp8711 TO 800
Internal=1

ELSE

ASSIGN @Hp8711 TO 716
Internal=0
ABORT 7

CLEAR 716

END IF

Example Programs

Identify the operating system.
If internal, set address to 800.
Set internal-control flag to 1.

If external, set address to 716.

Set internal-control flag to O.
Abort all bus transactions and
grve active control of the bus to
the computer.

Send a selected device cleay (SDC)
to the analyzer — this clears all
HP-IB errors, resets the HP-IB
wnterface and clears syntax er-
rors. (It does not qffect the status
reporting system.)

8-3

Example Programs

The following table shows the sections and example programs that are
contained in this chapter:

Section Title

Example Program

Program Description

Configuring Measurements SETUP Sets up a basic measurement, demonstrates use of *WAI
LIMITEST Performs automatic pass/fail testing with limit lines

Transfer of Data to/from the MARKERS Transfers data using markers

Analyzer
SMITHMKRY Measures reflection of a filter in Smith chart and polar formats
ASCDATA Transfers data using ASCIl format
REALDATA Transfers data using the IEEE 64-bit floating point REAL format
INTDATA Transfers data using the 16-bit INTEGER format

Calibration TRANCAL Performs a transmission calibration
REFLCAL Performs a reflection calibration
LOADCALS Uploads and downloads correction arrays
CALKIT This is not a program, it is an instrument state file for downloading

user-defined cal kit definitions

Instrument State and Save/Recall | LEARNSTR Uses the learn string to upload and download instrument states
SAVERCL Saves and recalls instrument states, calibrations and data

Hardcopy Control PRINTPLT Uses the serial and parallel ports for hardcopy output
PASSCTRL Uses pass control and the HP-IB for hardcopy output
FAST_PRT Provides fast graph dumps to PCLS printers

Service Request SRQ Generates a service request interrupt

File Transfer Over HP-IB GETHLE Transfers a file from the analyzer to an external controller
PUTFILE Transfers a file from an external controller to the analyzer

Customized Display GRAPHICS Uses graphics and softkeys to create customized procedures

1 For use with HP 8712B and 8714B only

8-4

Configuring Measurements

SETUP

LIMITEST

Setting up a basic measurement. The example also
demonstrates the use of the *WAI command.

Performing automatic PASS/FAIL testing with limit lines.
The example also demonstrates some methods of combining
mnemonics for more efficient programming.

8-5

Example Programs
Configuring Measurements

~NOoO O WN -

100

SETUP Example Program

This program demonstrates how to set up the analyzer to make a basic
measurement. The *WAI command is used extensively throughout this
program. This has the effect of making sure that the commands are executed
in the order they are received. More information about making measurements
with the analyzer is available in the User’s Guide.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

'Filename: SETUP

[}
! Description:

! Set Channel 1 to measure filter’s transmission.

! Set Channel 2 to measure filter’s reflection

! Prompt user for start and stop freq, and set them.
! Take a sweep.

! Set Scale and Reference levels.

[}

IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
ELSE
ASSIGN @Hp8711 TO 716
ABORT 7
CLEAR 716
END IF
|
! Preset the instrument.
OUTPUT @Hp8711;"SYST:PRES;*WAI"
|

! Configure the analyzer to measure transmission
! of a filter on channel 1. This is the command
! for the BEGIN Filter Transmissn key sequence.
OUTPUT @Hp8711;"CONF ’FILT:TRAN’;*WAI"

|

! Put the instrument in trigger hold mode.
OUTPUT @Hp8711;"ABOR;:INIT:CONT OFF;*WAIL"

8-6

101
103
110
111
113
114
120
121
122
123
124
125
126
127
130
131
132
140
141
142
143
150

151
152
160
161
162
170
171
172
180

181
182
190
191
192
200
201
202

Example Programs
Configuring Measurements

! Turn on channel 2.
OUTPUT @Hp8711;"SENS2:STAT ON;*WAI"
]

! Configure channel 2 to measure reflection. This

! is the command for the CHAN 2 Reflection key sequence.
OQUTPUT @Hp8711;"SENS2:FUNC ’XFR:POW:RAT 1,0’ ;DET NBAN"

|

! Wait for the previous commands to complete execution
! (respond to the *0PC7?).

OQUTPUT @Hp8711;"*0PC?"

ENTER @Hp8711;0pc

|

! Input a start frequency.

INPUT "Enter Start Frequency (MHz):",Start_f

|

! Input a stop frequency.

INPUT "Enter Stop Frequency (MHz):",Stop_f

|

! Set the start and stop frequencies of the analyzer
! to the values entered.

OQUTPUT @Hp8711;"SENS2:FREQ:STAR";Start_f;"MHz;STOP"
;Stop_£;"MHz; *WAI"

|

! Trigger a single sweep.
OUTPUT @Hp8711;"INIT;=*0PC?"
|

! Wait for the sweep to be completed.
ENTER @Hp8711;0pc
|

! Set up the scale and reference parameters for channel 1.
QUTPUT @Hp8711;"DISP:WIND1:TRAC:Y:PDIV 10 DB;RLEV O DB

;RPOS 8"

|

! Now for channel 2.

OQUTPUT @Hp8711;"DISP:WIND2:TRAC:Y:PDIV 5 DB;RLEV O DB;RP0OS 8"
|

! Make channel 1 active (transmission)
OUTPUT @Hp8711;"SENS1:STAT ON"
]

! Display the current start and stop frequencies.

8-7

Example Programs
Configuring Measurements

210 DISP "Done measuring. Start =";Start_f;"MHz
Stop =";Stop_f;"MHz"
220 END

8-8

Example Programs
Configuring Measurements

10
20
30
40
50
60
70
80
81
82
90
91
92
100
101
102
103
110

LIMITEST Example Program

This program demonstrates how to set up and use limit lines over the HP-IB.
The example device used in this program is the demonstration filter that is
shipped with the analyzer. The program sets up the basic measurement,
downloads the limit lines and uses the status registers to determine of the
device passes its specifications. For more information about limit lines, refer
to the User’s Guide. For information about using the status registers, refer to
the previous section “Using the Status Registers.”

This example also demonstrates how multiple command mnemonics can be
combined together. The easiest commands to combine are ones that are
closely related on the command tree (such as the start and stop frequency
of a limit segment). For more information of command mnemonics, refer to
Chapter 10, “Introduction to SCPIL.”

Lines 20-80 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

'Filename: LIMITEST
|
DIM Title$[30]
IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
ELSE
ASSIGN @Hp8711 TO 716
ABORT 7
CLEAR 716
END IF
|
! Perform a system preset; this clears the limit table.
OUTPUT @Hp8711;"SYST:PRES;*WAI"
|

! Set up the source frequencies for the measurement.
OQUTPUT @Hp8711;"SENS1:FREQ:STAR 10 MHZ;STOP 400 MHZ;*WAI"
|

! Set up the receiver for the measurement parameters
! (Transmission in this case).
OUTPUT @Hp8711;"SENS1:FUNC ’XFR:POW:RAT 2,0’ ;DET NBAN;*WAI"

8-9

111
112
113
120

121
122
123
124
130
131
132
140
141
142
143
144
150
151
152
153
160
161
162
170
171
172
173
180
181
182
190
191
192
200

201
202
203
210
211

Example Programs
Configuring Measurements

|

! Configure the display so measurement

! results are easy to see.

QUTPUT @Hp8711;"DISP:WIND1:TRAC:Y:PDIV 10 DB;
RLEV O DB;RPOS 9"

|

! Reduce the distractions on the display by
! getting rid of notation that will not be
! needed in this example.

QUTPUT @Hp8711;"DISP:ANN:YAX OFF"

|

! Erase the graticule grid for the same reason.
OUTPUT @Hp8711;"DISP:WIND1:TRAC:GRAT:GRID OFF"
|

! Create and turn on the first segment for

! the new limit lines; this one is a maximum

! limit.

OUTPUT @Hp8711;"CALC1:LIM:SEGM1:TYPE LMAX;STAT ON"
|

! Set the amplitude limits for the first limit

! segment.

QUTPUT @Hp8711;"CALC1:LIM:SEGM1:AMPL:STAR -70;STOP -70"
|

! Set the frequency of the first limit segment.
OUTPUT @Hp8711;"CALC1:LIM:SEGM1:FREQ:STAR 10 MHZ;STOP 75 MHZ"
|

! Create and turn on a second maximum limit

! segment.

OUTPUT @Hp8711;"CALC1:LIM:SEGM2:TYPE LMAX;STAT ON"
]

! Set the amplitude limits for segment 2.
OUTPUT @Hp8711;"CALC1:LIM:SEGM2:AMPL:STAR O;STOP 0"
|

! Set the frequency range for segment 2.

OUTPUT @Hp8711;"CALC1:LIM:SEGM2:FREQ:STAR 145 MHZ
;STOP 200 MHZ"

|

! Create and turn on a third limit segment;

! this one is a minimum limit.

OUTPUT @Hp8711;"CALC1:LIM:SEGM3:TYPE LMIN;STAT ON"
|

8-10

212
220
221
222
230

231
232
240
250
260

261
262
263
270
271
272
280
281
282
290
291
292
293
300
301
302
303
310
311
312
313
320
321
322
330
331
332
333
340

Example Programs
Configuring Measurements

! Set the amplitude limits for segment 3.
OUTPUT @Hp8711;"CALC1:LIM:SEGM3:AMPL:STAR -6;STOP -6"
|

! Set the frequency range for segment 3.

OUTPUT @Hp8711;"CALC1:LIM:SEGM3:FREQ:STAR 150 MHZ
;STOP 195 MHZ"

|

! Create and set parameters for segment 4.

QUTPUT @Hp8711;"CALC1:LIM:SEGM4:TYPE LMAX;STAT ON"
QUTPUT @Hp8711;"CALC1:LIM:SEGM4:AMPL:STAR -60;STOP -60"
OUTPUT @Hp8711;"CALC1:LIM:SEGM4:FREQ:STAR 290 MHZ
;STOP 400 MHZ"

|

! Send an operation complete query to ensure that
! all overlapped commands have been executed.
QUTPUT @Hp8711;"*0PC?"

|

! Wait for the reply.
ENTER @Hp8711;0pc
|

! Turn on the display of the limit lines.
OUTPUT @Hp8711;"CALC1:LIM:DISP ON"
|

! Turn on the pass/fail testing; watch the

! analyzer’s display for the pass/fail indicator.
OUTPUT @Hp8711;"CALC1:LIM:STAT ON"

|

! Take a controlled sweep to ensure that

! there is real data present for the limit test.
QUTPUT @Hp8711;"ABOR;:INIT1:CONT OFF;:INIT1;*WAI"
|

! Query the limit fail condition register to see
! 1f there is a failure.

OUTPUT @Hp8711;"STAT:QUES:LIM:COND?"

|

! Read the register’s contents.
ENTER @Hp8711;Fail_flag
|

! Bit 0 is the test result for channel 1 while
! bit 1 is the results for channel 2 limit testing.
IF BIT(Fail_flag,0)=1 THEN

341
342
343
350
351
352
360
361
362
370
371
372
380
381
383
384
390
400
401
402
403
410
420
430
431
432
433
434
440
450

Example Programs
Configuring Measurements

|

! In case of failure, give additional direction

! to the operator using the title strings.

Title$="Limit Test FAIL - Tune device"

|

! Turn on the title string.

OUTPUT Q@Hp8711;"DISP:ANN:TITL1:DATA ’"&Title$&"’;STAT ON"
|

! Turn on continuous sweep mode for tuning.
OUTPUT @Hp8711;"INIT1:CONT ON;*WAI"
|

! Loop while the tuning is taking place.
LOOP
|
! Monitor the status of the limit fail
! condition register.
QUTPUT @Hp8711;"STAT:QUES:LIM:COND?"
ENTER @Hp8711;Fail_flag
|
! Check the limit fail bit. Exit if the
! device has been tuned to pass the test.
EXIT IF BIT(Fail_flag,0)=0
END LOOP
END IF
|
! Turn off the prompt to the operator and
! return the analyzer to the continuously
! sweeping mode.
QUTPUT @Hp8711;"DISP:ANN:TITL1 OFF;:INIT:CONT ON;*WAI"
END

8-12

Transfer of Data to/from the Analyzer

MARKERS

& SMITHMKR

ASCDATA
REALDATA

INTDATA

Transferring data using markers. The example also
demonstrates the use of the query form of command
mnemonics.

Measures reflection of a filter in Smith chart and polar
formats.

Transferring data using the ASCII format.

Transferring data using the IEEE 64-bit floating point REAL
format. The example also demonstrates block data transfers
of both indefinite length and definite length syntax. Also
demonstrated is access to the swapped-byte data format
designed for PCs.

Transferring data using the 16-bit INTEGER format.

& indicates HP 8712B/14B only §8-13

Example Programs
Transfer of Data to/from the Analyzer

O ~NO Uk WN -~

MARKERS Example Program

This program demonstrates how to transfer measurement data by using the
markers. Before any data is read over the HP-IB a controlled sweep should
be taken. The analyzer has the ability to process and execute commands
very quickly when they are received over the HP-IB. This speed can lead to
commands (such as marker searches) being executed before any data has
been taken. To ensure that the sweep has completed and the data is present
before it is read, the command for a single sweep is used before data is
requested. Note that *WAT is sent with that command. More information
about making measurements with the analyzer is available in the User’s
Guide.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

'Filename: MARKERS

! Description:
1. Take sweep
2. Set marker to 175 MHz, and query Y value
3. Execute Marker -> Max, and query X and Y
4. Turn on marker tracking
5. Execute a 3 dB bandwidth search
6. Query the result
IF POS(SYSTEM$("SYSTEM ID"),"HP 871'") THEN
ASSIGN @Hp8711 TO 800
ELSE
ASSIGN @Hp8711 TO 716
ABORT 7
CLEAR 716
END IF

|
! Turn on channel 1 and set up start and stop

! frequencies for the example. These frequencies

! were chosen for the demonstration filter that is

! shipped with the analyzer.

QUTPUT @Hp8711;"SENS1:STAT ON;FREQ:STAR 10 MHZ;STOP 400

8-14

Example Programs
Transfer of Data to/from the Analyzer

MHZ ; *WAT"

81 !

82 ! Configure a transmission measurement on channel 1
83 ! using the narrowband detection mode.

920 OUTPUT @Hp8711;"SENS1:FUNC ’XFR:POW:RAT 2,0’ ;DET NBAN;*WAI"
91 !

92 ! Take a single controlled sweep and have the
93 ! analyzer wait until it has completed before
94 ! executing the next command.

100 OUTPUT @Hp8711;"ABOR; :INIT:CONT OFF;:INIT;*WAI"
101 !

102 ! Turn on the first marker.

110 OUTPUT @Hp8711;"CALC1:MARK1 ON"

111 !

112 ! Set marker 1 to a frequency of 175 MHz.

120 OUTPUT @Hp8711;"CALC1:MARK1:X 175 MHZ"

121 !

122 ! Query the amplitude of the signal at 175 MHz.
130 OUTPUT @Hp8711;"CALC1:MARK1:Y?"

131 !

132 ! Read the data; the data is in the NR3 format.
140 ENTER @Hp8711;Data_1

150 DISP '"Marker 1 (175 MHz) = ";Data_1

160 WAIT 5

161 !

162 ! Turn on the second marker and use a marker
163 ! search function to find the maximum point

164 ! on the data trace.

170 OUTPUT @Hp8711;"CALC1:MARK2 ON;MARK2:MAX"

171 !

172 ! Query the frequency and amplitude of the

173 ! maximum point. Note that the two queries can
174 ! be combined into one command.

180 OUTPUT @Hp8711;"CALC1:MARK2:X7;Y?"

181 !

182 ! Read the data.

190 ENTER @Hp8711;Freq2,Data2

191 !

192 ! Display the results of the marker search.

200 DISP "Max = ";Data2;"dB at";Freq2/1.E+6;"MHz"
201 !

8-15

202
203
204
210
211
212
213
214
215
220
230
231
232
240
241
242
250
251
252
253
254
260
261
262
263
270
271
272
280
290
300
310
320
330
340
341
342
350
360

Example Programs

Transfer of Data to/from the Analyzer

Put the analyzer into its continuously
sweeping mode. This mode works well for
tuning applications.

OUTPUT @Hp8711;"INIT:CONT ON;*WAI"

Turn on the marker search tracking function.
This function causes the marker 2 to track
the maximum value each time the analyzer takes
a sweep.

OUTPUT @Hp8711;"CALC1:MARK2:FUNC:TRAC ON"
WAIT 5

Turn off marker 2.

OUTPUT @Hp8711;"CALC1:MARK2 OFF"

Take a single controlled sweep.

OUTPUT @Hp8711;"ABOR;:INIT:CONT OFF;:INIT;*WAI"

Perform a search for the -3 dB bandwidth of
the filter. This function uses several

! markers to find four key values.
OUTPUT @Hp8711;"CALC1:MARK:BWID -3;FUNC:RES?"
|

Read the four values: the bandwidth, center
frequency, Q and the insertion loss.

ENTER @Hp8711;Bwid,Center_f,Q,Loss
]

Display the results.

DISP "BW: ";Bwid

WAIT 5

DISP '"Center Freq: ";Center_f
WAIT 5

DISP "Q: ";Q

WAIT 5

DISP "Loss: ";Loss

Turn off all the markers.

OUTPUT @Hp8711;"CALC1:MARK:AOFF"
END

8-16

Example Programs
Transfer of Data to/from the Analyzer

10
20
70
80
90
100

110
120

130
140

150

160

170
180

190
200
210

220
230
240
250
260
270
280
290
300
310
320

@SMITHMKR Example Program

'Filename: SMITHCHART

Description: Measures a 175 MHz BPF using the
Smith and Polar plot formats. User must connect
the 175 MHz filter between the reflection and
transmission
ports. The program will do the following:

1)

2)

3)

Set analyzer to sweep over the filter’s

passband (50 MHz)

Set analyzer to Smith Chart format; make a marker
reading (Frequency, Real Impedance in ohms,
Imaginary Impedance
in ohms, Impedance Capacitance or Inductance);
dump the
trace and print S11 Real and Imaginary values
for the
first data point.

Set analyzer to Polar Chart format; make

a marker

reading (Frequency, Linear Magnitude in "units",

Phase in degrees); dump the

trace and print S11 Real and Imaginary values

for the

first data point.

skt sk ok sk ok ook skok ook sk ok kookok ok ok skok sk ok sk ok kook skok s kok sk ok skok ok ok sk ok ook k
! DEFINITIONS

REAL Opc,Freq_center,Freq_span,Freq_start,Bpf_q,Bpf_loss
REAL Mrkr_freq,Mrkr_res,Mrkr_reac,Mrkr_ind
REAL Trace_s11(1:201,1:2) ,Mrkr_mag,Mrkr_phas

Dotttk ko oo okok ok ok ok ok ok ok skok ok ok sk ok sk skooootoook o ok koo ko ok ok ok ok ok ok ok oK
! Determine computer type

8-17

Example Programs
Transfer of Data to/from the Analyzer

330 !

340 CLEAR SCREEN

350 !

360 IF POS(SYSTEM$("SYSTEM ID"),"HP 871'") THEN
'if this is an 871x

370 ASSIGN @Hp871x TO 800

'use 871x internal address
380 ELSE

!program running on ext computer

390 ASSIGN @Hp871x TO 716

'use 871x external address
400 ABORT 7

'abort operations on HP-IB
410 CLEAR 716
420 END IF
430 !
440 e e
450 ! Preset analyzer, set Center and Span frequencies
460 !

470 OUTPUT @Hp871x;"SYST:PRES;*0PC?"
!preset instrument
480 ENTER @Hp871x;0pc
!waits for PRESET to finish before proceeding

490 !

500 ! Center the filter’s frequency response (to get an
accurate Bandwidth measurement)

510 !

520 DISP "Setting analyzer frequencies..."
!message to user
530 OQUTPUT @Hp871x;"ABOR;:INIT:CONT OFF;:INIT;*0PC?"
!take a single sweep
540 ENTER @Hp871x;0pc
'wait for sweep to finish
550 OUTPUT @Hp871x;"CALC1:MARK:FUNC MAX;*WAI"
!'set Marker 1 to max
560 OUTPUT @Hp871x;"CALC1:MARK:X7;*WAI"
!get Marker frequency setting
570 ENTER @Hp871x;Mrkr_freq
!read frequency of max marker
580 OUTPUT @Hp871x;"SENS1:FREQ:CENT "&VAL$(Mrkr_freq)

8-18

590

600
610

620
630

640

650

660

670

680

690
700
710
720
730
740
750
760
770
780
790
800

810

Example Programs
Transfer of Data to/from the Analyzer

&" HZ;*WAI" !set Center Freq

OUTPUT @Hp871x;"SENS1:FREQ:SPAN 200 MHZ;*WAI"

!set Span Freq = 200 MHz

|

! Measure Bandwidth, set Center to band center,
Span to 50 MH=z

|

OUTPUT @Hp871x;"ABOR;:INIT:CONT OFF;:INIT;*0PC?"

!take a single sweep

ENTER @Hp871x;0pc

'wait for sweep to finish

OUTPUT @Hp871x;"CALC1:MARK:FUNC BWID;*0PC?"

!'search filter for -3dB bandwidth

ENTER @Hp871x;0pc

'wait for bandwidth to be found

QUTPUT @Hp871x;"CALC1:MARK:FUNC:RES?"

!read the bandwidth data

ENTER @Hp871x;Freq_span,Freq_center,Bpf_q,Bpf_loss

!read in data

OUTPUT Q@Hp871x;"SENS1:FREQ:CENT "&VAL$(Freq_center)&"
HZ ;*WAI" !set Center Freq

OUTPUT @Hp871x;"SENS1:FREQ:SPAN 50 MHZ;*WATI"

!set Span Freq to 50 MHz (passband)

! Set marker 1 to beginning of trace

|

QUTPUT @Hp871x;"CALC1:MARK:AQFF;*WAI"
!clear all markers

OUTPUT @Hp871x;"CALC1:MARK1 ON"

!turn on marker 1

QUTPUT @Hp871x;"SENS1:FREQ:STAR?"

!get start frequency

ENTER @Hp871x;Freq_start

!lenter start freq

OUTPUT @Hp871x;"CALC1:MARK1:X "&VAL$(Freq_start)
&" ;x0PC?" !'set marker to start freq
ENTER @Hp871x;0pc

'wait for all previous commands to finish
|

8-19

820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060

1070
1080

Example Programs
Transfer of Data to/from the Analyzer

! Set to Reflection mode & Smith Chart format.

|

DISP "Setting to Smith Chart format..."

QUTPUT @Hp871x;"ABOR;:INIT1:CONT ON;*WAI"

!set to Cont Sweep mode so can select reflection
QUTPUT @Hp871x;"SENS1:FUNC ’XFR:POW:RAT 1,0’
;DET NBAN;*WAI" !CHAN1=reflection

QUTPUT @Hp871x;"CALC1:FORM SMIT;*WAI"

!set smith chart format

! Read marker information from Smith Chart
|

OUTPUT @Hp871x;"ABOR;:INIT:CONT OFF;:INIT;*0PC?"
!force one sweep before read markers

ENTER @Hp871x;0pc

'wait for sweep to finish

QUTPUT @Hp871x;"ABOR;:INIT1:CONT ON;*WAI"
!set to Continuous Sweep mode

QUTPUT @Hp871x;"CALC1:MARK:X?"

'read marker frequency

ENTER @Hp871x;Mrkr_freq

'units are in Hz

OQUTPUT @Hp871x;"CALC1:MARK:Y:RES?"

'read real part of marker impedance

ENTER @Hp871x;Mrkr_res

'units are in ohms

OUTPUT @Hp871x;"CALC1:MARK:Y:REAC?"

!read imaginary part of marker impedance
ENTER @Hp871x;Mrkr_reac

'units are in ohms

OQUTPUT @Hp871x;"CALC1:MARK:Y:IND?"

!read inductance (or capacitance)

ENTER @Hp871x;Mrkr_ind

'units are Henries if positive value, Farads if negative

! Display Smith Marker data
|

Mrkr_freq=DROUND (Mrkr_freq,3)

8-20

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320

1330

Example Programs
Transfer of Data to/from the Analyzer

'round frequency to 3 digits

DISP "Smith Marker Frequency = "&VAL$ (Mrkr_freq)

&"Hz" !'display frequency

WAIT 3

|

Mrkr_res=DROUND (Mrkr_res,3)

'round resistance to 3 digits

DISP "Smith Marker Resistance = "&VAL$(Mrkr_res)

&II Ohmsll

WAIT 3

|

Mrkr_reac=DROUND (Mrkr_reac,3)

'round reactance to 3 digits

DISP "Smith Marker Reactance = "&VAL$(Mrkr_reac)

&II Ohmsll

WAIT 3

|

Mrkr_ind=DROUND (Mrkr_ind,3)

!round inductance to 3 digits

IF Mrkr_ind<0 THEN

!label as capacitance if negative
DISP "Smith Marker Capacitance = "&VAL$(-Mrkr_ind)
&"F" !label capacitance

ELSE

!label as inductance if positive
DISP "Smith Marker Inductance = "&VAL$(Mrkr_ind)
&"H" !label inductance

END IF

WAIT 3

! Read Smith Chart formatted trace data, display
first data point.

! Data is transferred in ASCII format with 3
significant digits.

! S11 trace data is read out as: Real data for
peoint #1, Imaginary data

! for point #1, Real data for point #2, Imaginary
data for point #2...

! Since instrument was preset, number of trace data
points

8-21

Example Programs
Transfer of Data to/from the Analyzer

1340 ! defaults to 201.
1350 !
1360 OUTPUT @Hp871x;"FORM:DATA ASC,3;:TRAC? CH1FDATA"
!set up to read ASCII data, 3 digits
1370 ENTER QHp871x;Trace_s11(*)
!read trace data, real & imaginary pairs
1380 !
1390 ! Display data
1400 !
1410 DISP "Smith Trace Point #1: S11(REAL) =
"gVAL$ (Trace_s11(1,1))&" Units" !display Real data
1420 WAIT 3
1430 DISP "Smith Trace Point #1: S11(IMAGINARY) =
"gVAL$(Trace_s11(1,2))&" Units"
!display Imaginary data
1440 WAIT 3
1450 !
1460 !++++++++++++++++tttttttttttt bbbttt bbb bbb bbb bbb bbb bbb+
1470 ! Set to Polar Chart Format, read Polar Markers
1480 !
1490 DISP "Setting to Polar Format..."
1500 OUTPUT @Hp871x;"CALC1:FORM POL;*WAI"
!set polar chart format
1510 OUTPUT @Hp871x;"CALC1:MARK:X7?"
'read marker frequency
1520 ENTER @Hp871x;Mrkr_freq
'units are in Hz
1530 OUTPUT @Hp871x;'"CALC1:MARK:Y:MAGN?"
'read magnitude marker reflection coefficient
1540 ENTER QHp871x;Mrkr_mag
'magnitude in "units"
1550 OUTPUT @Hp871x;'"CALC1:MARK:Y:PHAS?"
'read phase of marker reflection coefficient
1560 ENTER @Hp871x;Mrkr_phas
'units are in degrees
1570 !
1580 !-------mmm
1590 ! Display Polar Marker data
1600 !
1610 Mrkr_freq=DROUND (Mrkr_freq,3)
'round frequency to 3 digits

8-22

1620

1630
1640
1650

1660

1670
1680
1690

1700

1710
1720
1730
1740
1750

1760

1770
1780

1790

1800
1810
1820
1830

1840
1850

1860
1870
1880
1890
1900

Example Programs
Transfer of Data to/from the Analyzer

DISP "Polar Marker Frequency = "&VAL$(Mrkr_freq)&"Hz"

!'display frequency

WAIT 3

|

Mrkr_mag=DROUND (Mrkr_mag,3)

'round magnitude to 3 digits

DISP "Polar Marker Magnitude = "&VAL$(Mrkr_mag)

&" Units" !display magnitude

WAIT 3

|

Mrkr_phas=DROUND (Mrkr_phas,3)

!round phase to 3 digits

DISP "Polar Marker Phase = "&VAL$(Mrkr_phas)

&" Degrees" !display phase

WAIT 3

|

! __

! Read Polar Chart trace data, display first data point.

! S11 trace data is read out as: Real data for
peoint #1, Imaginary data

! for point #1, Real data for point #2, Imaginary data
for point #2...

|

OUTPUT @Hp871x;"FORM:DATA ASC,3;:TRAC? CH1IFDATA"

!set up to read ASCII data, 3 digits

ENTER @Hp871x;Trace_s11(*)

!read trace data, real & imaginary pairs

|

! Display data

|

DISP "Polar Trace Point #1: S11(REAL) =

"gVAL$ (Trace_s11(1,1))&" Units" !display Real data

WAIT 3

DISP "Polar Trace Point #1: S11(IMAGINARY) =

"gVAL$ (Trace_s11(1,2))&" Units" !'display Imaginary data

WAIT 3

DISp "" !clear display line

|

STOP

END

8-23

Example Programs

Transfer of Data to/from the Analyzer

ASCDATA Example Program

This program demonstrates how to read data arrays from the analyzer

and write them back again. The ASCii data format is being used with a

resolution of 5 digits. More information about data transfer is available
in Chapter 4, “Data Types and Encoding,” and Chapter 6, “Trace Data

Transfers.”

In addition to the channel 1 formatted data array used in this example, there
are a number of arrays that can be accessed inside the instrument. These
arrays and their corresponding mnemonics are listed in Chapter 6 in Table 6-4

and Table 6-5.
1 'Filename: ASCDATA
2 !
3 ! Description:
4 ! 1. Takes a sweep, and reads the formatted
5 ! data trace into an array. The trace
6 ! is read as a definite length block.
7 ! 2. Instructs you to remove DUT
8 ! 3. Downloads the trace back to the analyzer
9 ! as an indefinite length block.
10 REAL Datal(1:51)
20 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
30 ASSIGN @Hp8711 TO 800
40 ELSE
50 ASSIGN @Hp8711 TO 716
60 ABORT 7
70 CLEAR 716
80 END IF
81 !
82 ! Set the analyzer to measure 51 data points.
920 OUTPUT @Hp8711;"SENS1:SWE:POIN 51;*WAI"
91 !
92 ! Take a single sweep, leaving the analyzer
93 ! in trigger hold mode.
100 OUTPUT @Hp8711;"ABOR;:INIT1:CONT OFF;:INIT1;*WAI"
101 !
102 ! Set up the ASCII data format with 5

8-24

103
110
111
112
113
115
116
117
120
121
122
130
131
132
133
140
141
142
143
150
160
161
162
165
166
167
170
175
180
181
182
183
184
185
190
191
192
193
194
195
200

Example Programs
Transfer of Data to/from the Analyzer

! significant digits
OUTPUT @Hp8711;"FORM:DATA ASC,5"
|

! request the channel 1 formatted data array
! from the instrument.

OQUTPUT @Hp8711;"TRAC? CH1FDATA"

|

! Get the data and put into data array Datal.
ENTER QHp8711;Datal(*)
|

! Display the first 3 numbers in the array.
DISP "Trace: '";Datal(1l);Datal(2);Datal(3);"..."
|

! Use the wait time to visually compare the

! numbers to the visible data trace.

WAIT 5

|

! Prompt the operator to disconnect the test

! device and then how to continue the program.
DISP "Disconnect the test device -- Press Continue"
PAUSE

|

! Update the display line.

DISP "Taking a new sweep...'";

|

! Take a sweep so the display shows new data.
OQUTPUT @Hp8711;":INIT1;*WAI"

DISP " Done."

WAIT 5

|

! Prepare the analyzer to receive the data.

! Suppress the "end" character by using a

! semicolon at end of output statement.

DISP "Downloading saved trace...';

OUTPUT @Hp8711;"TRAC CH1FDATA";

|
! Send the data array one point at a time,
! using the semicolon at the end of the
! output statement to suppress the

! end character.

FOR I=1 TO 51

8-25

Example Programs
Transfer of Data to/from the Analyzer

210 QUTPUT @Hp8711;", ";Datal(I);
220 NEXT I

221 !

222 ! Now send the end character.

230 OUTPUT @Hp8711;""
240 DISP " Done!"
250 END

8-26

Example Programs
Transfer of Data to/from the Analyzer

REALDATA Example Program

This program demonstrates how to read data arrays from the analyzer and
write them back again. The REAL,64 data format is being used. Note that
the analyzer outputs the data using the definite length block syntax. This
example uses the indefinite length block syntax when data is being written
back to the analyzer. More information about data transfer is available

in Chapter 4, “Data Types and Encoding.” All of the arrays listed in the
ASCDATA example section can also be accessed using this data format.

Lines 30-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 20-80 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

'Filename: REALDATA

|
! Description:

! 1. Takes a sweep, and reads the formatted

! data trace into an array. The trace

! is read as a definite length block.

! 2. Instructs you to remove DUT

! 3. Downloads the trace back to the analyzer
! as an indefinite length block.

10 DIM A$[10],Data1(1:51)

20 INTEGER Digits,Bytes

30 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

OO ~NO O WN -~

40 ASSIGN @Hp8711 TO 800

50 ELSE

60 ASSIGN @Hp8711 TO 716

70 ABORT 7

80 CLEAR 716

920 END IF

91 !

92 ! Set up the analyzer to measure 51 data points.

8-27

Example Programs
Transfer of Data to/from the Analyzer

100
101
102
103
110
111
112
120
121
130
140
160
161
162
163
164
170
171
173
174
175
176
180
181
182
183
184
185
190
191
192
193
194
200
201
202
210
211
212
220
221

OUTPUT @Hp8711;"SENS1:SWE:POIN 51;*WAI"
]

! Take a single sweep, leaving the analyzer

! in trigger hold mode.

OUTPUT @Hp8711;"ABOR;:INIT1:CONT OFF;:INIT1;*WAI"
|

! Select binary block transfer
OUTPUT @Hp8711;"FORM:DATA REAL,64"
|

! Request the channel 1 formatted data array
! from the analyzer.

OQUTPUT @Hp8711;"TRAC? CH1FDATA"

|

! Turn on ASCII formatting on the I/0 path.
! It is needed for reading the header

! information.

ASSIGN @Hp8711;FORMAT ON

|
! Get the data header. "A$" will contain the

! "#" character indicating a block data transfer.
! "Digits" will contain the number of characters
! for the number of bytes value which follows.
ENTER QHp8711 USING "%,A,D";A$,Digits

!
! Get the rest of the header. The number of

! bytes to capture in the data array will be

! placed in "Bytes'". Note the use of "Digits"
! in the IMAGE string.

ENTER @Hp8711 USING " ,"&VAL$(Digits)&"D";Bytes
|

! Turn off ASCII formatting on the I/0 path;
! it is not needed for transferring binary

! formatted data.

ASSIGN @Hp8711;FORMAT OFF

|

! Get the data.
ENTER @Hp8711;Datal(x*)
]

! Turn on ASCII formatting again.
ASSIGN @Hp8711;FORMAT ON
|

8-28

222
230
231
232
240
241
242
243
250
251
252
253
260
270
271
272
275
276
277
280
285
290
291
292
293
295
300
301
302
310
311
312
320
321
322
330
340
350

Example Programs
Transfer of Data to/from the Analyzer

! Get the "end of data" character.
ENTER Q@Hp8711;A$
]

! Display the first three numbers in the array.
DISP "Trace: '";Datal(1l);Datal(2);Datal(3);"..."
|

! Use this time to visually compare the

! numbers to the visible data trace.

WAIT 5

|

! Prompt the operator to disconnect the test

! device and how to continue the program.

DISP "Disconnect the test device -- Press Continue"
PAUSE

|

! Update the display line.

DISP "Taking a new sweep...'";

|

! Take a sweep so the display shows new data.
OQUTPUT @Hp8711;":INIT1;*WAI"

DISP " Done."

WAIT 5

|

! Send the header for an indefinite block length
! data transfer.

DISP "Downloading saved trace...';

OUTPUT @Hp8711;"TRAC CH1FDATA, #0'";

|

! Turn off ASCII formatting.

ASSIGN @Hp8711;FORMAT OFF

|

! Send the data array back to the analyzer.
OUTPUT @Hp8711;Datal(*) ,END

|

! Turn on ASCII formatting again.

ASSIGN @Hp8711;FORMAT ON

DISP " Done!"

END

8-29

Example Programs
Transfer of Data to/from the Analyzer

INTDATA Example Program

This program demonstrates how to read data arrays from the analyzer and
write them back again. The INTeger, 16 data format is being used. This data
format is the instrument’s internal format. It should only be used to read
data that will later be returned to the instrument.

The data array dimensioned in line 20 is different from the arrays in either
REAL,64 or ASCii examples. This is because each data point is represented
by a set of three 16-bit integers. Another difference in using this data format
is that all arrays cannot be accessed with it. The formatted data arrays
CH1FDATA and CH2FDATA cannot be read using the INTEGER format.

Note that the analyzer outputs the data using the definite length block
syntax. This example uses the indefinite length block syntax when data is
being written back to the analyzer. More information about data transfer is
available in Chapter 4, “Data Types and Encoding.”

Lines 30-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

'Filename: INTDATA

|
! Description:

! 1. Takes a sweep, and reads the formatted

! data trace into an array. The trace

! is read as a definite length block.

! 2. Instructs you to remove DUT

! 3. Downloads the trace back to the analyzer
9 ! as an indefinite length block.

10 DIM A$[10]

20 INTEGER Digits,Bytes,Datal(1:51,1:3)

30 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

O ~NO Ok WN -

40 ASSIGN @Hp8711 TO 800
50 ELSE

60 ASSIGN @Hp8711 TO 716
70 ABORT 7

80 CLEAR 716

90 END IF

8-30

91

93

100
101
102
103
110
111
112
120
121
130
140
160
161
162
163
170
171
172
173
174
175
180
181
182
183
184
185
190
191
192
193
194
200
201
202
210
211
212
220

Example Programs
Transfer of Data to/from the Analyzer

|

! Set up the analyzer to measure 51 data points.
OUTPUT @Hp8711;"SENS1:SWE:POIN 51 ;*WAI"

|

! Take a single sweep, leaving the analyzer

! in trigger hold mode.

OUTPUT @Hp8711;"ABOR;:INIT1:CONT OFF; :INIT1;*WAIL"
|

! Select binary block transfer
QUTPUT @Hp8711;"FORM:DATA INT,16"
|

! Request the channel 1 unformatted data array
! from the analyzer.

QUTPUT @Hp8711;"TRAC? CH1SDATA"

|

! Turn on ASCII formatting on the I/0 path;
! it is needed for reading the header information.
ASSIGN @Hp8711;FORMAT ON

|
! Get the data header. "A$" will contain the

! "#" character indicating a block data transfer.
! "Digits" will contain the number of characters
! for the number of bytes value which follows.
ENTER QHp8711 USING "%,A,D";A$,Digits

!

! Get the rest of the header. The number of

! bytes to capture in the data array will be

! placed in "Bytes'". Note the use of "Digits"
! in the IMAGE string.

ENTER Q@Hp8711 USING "%,"&VAL$(Digits)&"D";Bytes

! Turn off ASCII formatting on the I/0 path;
! it is not needed for transferring binary

! formatted data.

ASSIGN @Hp8711;FORMAT OFF

|

! Get the data.
ENTER @Hp8711;Datal(x*)
]

! Turn on ASCII formatting again.
ASSIGN @Hp8711;FORMAT ON

8-31

Example Programs
Transfer of Data to/from the Analyzer

221 !

222 ! Get the "end of data" character.

230 ENTER @Hp8711;A$

231 !

232 ! Display the first 3 numbers; there will
233 ! be no visible similarity between these
234 ! numbers and the data displayed on the

235 ! analyzer.
240 DISP "Trace: '";Datal1(1,1);Datal(1,2);Datal1(1,3);"..."
250 WAIT 5

251 !

252 ! Prompt the operator to disconnect the test

253 ! device and how to continue the program.

260 DISP '"Disconnect the test device -- Press Continue"
270 PAUSE

271 !

272 ! Update the display line.

275 DISP '"Taking a new sweep...";

276 !

277 ! Take a sweep so the display shows new data.

280 OUTPUT @Hp8711;":INIT1;*WAI"
285 DISP " Done."

290 WAIT &

291 !

292 ! Send the header for an indefinite block length
293 ! data transfer.

295 DISP '"Downloading saved trace...'";
300 OUTPUT @Hp8711;"TRAC CH1SDATA, #0";
|

301 !

302 ! Turn off ASCII formatting.

310 ASSIGN ©@Hp8711;FORMAT OFF

311 !

312 ! Send the data back to the analyzer.
320 OUTPUT @Hp8711;Datal(*),END

321 !

322 ! Turn on ASCII formatting.

330 ASSIGN @Hp8711;FORMAT ON
340 DISP "Done!"
350 END

8-32

Calibration

TRANCAL

REFLCAL

LOADCALS

CALKIT

Performing a transmission calibration. The calibration is
User Defined (performed over the instruments current
source settings). This example also demonstrates the use of
the *0PC? command.

Performing a reflection calibration. The calibration is Full
Band (performed over the instrument’s preset source
settings). This example also demonstrates the detection of
front panel key presses, the use of softkeys, and the use of
the *0PC? command.

Uploading and downloading correction arrays. The data
transfer is performed in the 16-bit integer format. The
arrays must be dimensioned properly for both the number of
data points and the format of the data being transferred.

Instrument state file for downloading User Defined cal

kit definitions. This example is NOT a program. It is an
instrument state file example. This type of file enables the
user to calibrate the analyzer for use with connector types
that are not in the firmware. See “Writing and Editing Your
Own Cal Kit File” in Chapter 6 of the User’s Guide.

8-33

Example Programs
Calibration

TRANCAL Example Program

This program demonstrates a transmission calibration performed over
user-defined source settings (frequency range, power and number of points).
The operation complete query is used at each step in the process to make
sure the steps are taken in the correct order. More information on calibration
is available in the User’s Guide.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

1 ! Filename: TRANCAL

2 !

3 ! Guide user through a transmission cal.

4 !

10 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
20 ASSIGN @Hp8711 TO 800

30 ELSE

40 ASSIGN @Hp8711 TO 716

50 ABORT 7

60 CLEAR 716

70 END IF

71 !

72 ! Configure the analyzer to measure transmission
73 ! on channel 1.

80 OUTPUT @Hp8711;"SENS1:FUNC ’XFR:POW:RAT 2,0’
;DET NBAN;*WATI"

81 !

82 ! Select a calibration kit type.

20 OUTPUT @Hp8711;"SENS:CORR:COLL:CKIT ’COAX,7MM,
TYPE-N,50,FEMALE’ "

91 !

92 ! Select a transmission calibration for the current
93 ! analyzer settings. The "IST:0FF" ensures that

94 ! the current settings will be used.

100 OUTPUT @Hp8711;"SENS1:CORR:COLL:IST OFF;METH TRAN1"
101 !
102 ! Prompt the operator to make a through

8-54

103
110
120
130
131
132
140
141
142
150
160
161
162
163
164
165
166
167
170
171
172
173
180
190
200

Example Programs
Calibration

! connection.

DISP "Connect THRU - Press Continue"

PAUSE

DISP "Measuring THRU"

|

! Analyzer measures the through.

QUTPUT @Hp8711;"SENS1:CORR:COLL STAN1;*0PC?"
|

! Wait until the measurement is complete.
ENTER @Hp8711;0pc

DISP "Calculating Error Coefficients"

|

! Tell the analyzer to calculate the

error coefficients after the measurement
is made, and then save for use during
subsequent transmission measurements.
Note that this is not the same as using
the SAVE RECALL key functionality.

OUTPUT @Hp8711;'"SENS1:CORR:COLL:SAVE; *0PC?"

! Wait for the calculations and save to be

! completed.

ENTER @Hp8711;0pc

DISP "User Defined TRANSMISSION CAL COMPLETED!"
END

8-35

Example Programs
Calibration

100
101
102
103
110

111
113
120

121
123
124
125

REFLCAL Example Program

This program demonstrates a reflection calibration performed over the
preset source settings (frequency range, power and number of points). The
operation complete query is used at each step in the process to make sure
the steps are taken in the correct order. More information on calibration is
available in the User’s Guide.

Lines 20-100 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

'Filename: REFLCAL
|
! Guide user through a reflection cal.
|
DIM Msg$[50]
IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
Internal=1
ELSE
ASSIGN @Hp8711 TO 716
Internal=0
ABORT 7
CLEAR 716
END IF
|
! Configure the analyzer to measure
! reflection on channel 1.
QUTPUT @Hp8711;"SENS1:FUNC ’XFR:POW:RAT 1,0’
;DET NBAN;*WAI"
|
! Select Calibration Kit for 50 ohm instruments.
OUTPUT @Hp8711;"SENS:CORR:COLL:CKIT ’COAX,7MM,
TYPE-N,50,FEMALE’ "
|
! Select Calibration Kit for 75 ohm instruments.
! (Comment out the 50 ohm line above and uncomment the line
! below.)

8-36

127

128
129
130
131
133
134
135
140
150
160
161
162
170
171
172
173
180
181
182
190
200
210
211
212
220
221
222
223
230
231
232
240
250
260
261
262
270
271
272

Example Programs
Calibration

! OUTPUT @Hp8711;"SENS:CORR:COLL:CKIT ’COAX,7MM,
TYPE-N,75,FEMALE’ "

Select a reflection calibration for the current
analyzer settings. The "IST:0FF'" ensures that
current settings will be used.

OUTPUT ©@Hp8711;"SENS1:CORR:COLL:IST OFF;METH REFL3"

! Prompt the operator to connect an open.
Msg$="Connect OPEN"

GOSUB Get_continue

DISP "Measuring OPEN"

|

! Measure the open.

QUTPUT @Hp8711;"SENS1:CORR:COLL STAN1;*0PC?"
|

! Wait until the measurement of the open
! is complete.

ENTER @Hp8711;0pc

|

! Prompt the operator to connect a short.
Msg$="Connect SHORT"

GOSUB Get_continue

DISP "Measuring SHORT"

|

! Measure the short.

QUTPUT @Hp8711;"SENS1:CORR:COLL STAN2;*0PC?"
|

! Wait until measurement of the short
! is complete.

ENTER @Hp8711;0pc

]

! Prompt operator to connect a load.
Msg$="Connect LOAD"

GOSUB Get_continue

DISP "Measuring LOAD"

|

! Measure the load.

QUTPUT @Hp8711;"SENS1:CORR:COLL STAN3;*0PC?"
! Wait until measurement of the load

! is complete.

8-37

280
290
291
292
293
294
295
296
297
300
301
302
303
310
320
330
331
340
341
342
343
350
351
352
353
360
361
362
363
370
380
390
400
401
402
403
410
411
412
420
421

Example Programs

Calibration

ENTER @Hp8711;0pc
DISP "Calculating Error Coefficients"

Tell the analyzer to calculate the
error coefficients, and then save

for use during subsequent reflection
measurements. Note that this is not
the same as using the SAVE RECALL key
functionality.

OUTPUT @Hp8711;"SENS1:CORR:COLL:SAVE;*0PC?"
]

Wait for the calculations to be completed
and the calibration saved.

ENTER @Hp8711;0pc
DISP "Full Band REFLECTION CAL COMPLETED!"
STOP

Get_continue: ! Subroutine to handle operator prompts.

"Internal" is determined above based on the
controller.

IF Internal=1 THEN

|
! If internal control, then use the display

! 1line for the prompt.
DISP Msg$&" - Press Measure Standard"
|

! Use the softkey 2 for the response; loop

! while waiting for it to be pressed.

ON KEY 2 LABEL "Measure Standard" RECOVER Go_on
LOOP

END LOOP

ELSE

|
! If external control, clear the key queue

! so previous key presses will not interfere.
QUTPUT @Hp8711;"SYST:KEY:QUE:CLE"
|

! Use the BEGIN key for the response.
DISP Msg$&" - Press BEGIN to continue"
|

8-38

Example Programs
Calibration

422 ! Turn on the key queue to trap all key
423 ! presses.

430 QUTPUT @Hp8711;"SYST:KEY:QUE ON"

431 !

432 ! Loop while waiting for a key to be
433 ! pressed.

440 LOOP

441 ! Query the device status condition
442 ! register.

450 QUTPUT @Hp8711;"STAT:DEV:COND?"

460 ENTER @Hp8711;Dev_cond

461 !

462 ! Check the bit that indicates a key press.
470 IF BIT{(Dev_cond,0)=1 THEN

480 OUTPUT @Hp8711;"SYST:KEY?"

490 ENTER @Hp8711;Key_code

500 END IF

501 !

502 ! Stop looping if the BEGIN key was pressed.
510 EXIT IF Key_code=40

520 END LOOP

530 Key_code=0

540 END IF

541 !

550 Go_on: ! Subroutine to turn off the softkeys
551 ! on the analyzer and the computer,
553 ! and return to main body of the

5854 ! program.

560 OFF KEY

570 RETURN

580 END

8-39

Example Programs
Calibration

LOADCALS Example Program

This program demonstrates how to read the correction arrays from the
analyzer and write them back again. The INTeger, 16 data format is being
used because the data does not need to be interpreted, only stored and
retrieved. More information about calibration is available in the User’s Guide.

The size of the arrays into which the data is read is critical. If they are not
dimensioned correctly the program will not work. Most correction arrays,
including the factory default (DEF) and the full band (FULL, preset source
settings) arrays have 801 points. For user defined calibrations (USER) the
number of points must be determined. If the number of points is other than
801, lines 30 and 280 will need to be changed to allocate arrays for the
correct number of points. The number of points can be found by reading the
correction array’s header and determining the size as shown in the example
below.

Lines 40-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

1 'Filename: LOADCALS

2 !

3 ! Description:

4 ! 1. Query the calibration arrays, based on
5 ! the current measurement (trans/refl).
6 ! 2. Change number of points to 801

7 ! 3. Download the calibration arrays back

8 ! into the analyzer.

9 |

10 DIM Func$[20],A$[10]

20 INTEGER Swap,Arrays,Digits,Bytes,Points

30 INTEGER Corr1(1:801,1:3),Corr2(1:801,1:3)
,Corr3(1:801,1:3)

40 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

50 ASSIGN @Hp8711 TO 800
60 ELSE

70 ASSIGN @Hp8711 TO 716
80 END IF

81 !

8-40

90

120
121
122
130
131
132
133
140
141
143
144
145
150
151
152
153
160
161
162
163
164
170
171
172
173
180
190
191
192
200
201
202
210
220
221
222
230
231
232
233

Example Programs
Calibration

! Query the measurement parameter.
OQUTPUT @Hp8711;"SENS1:FUNC?"
|

! Read the analyzer’s response.
ENTER @Hp8711;Func$
|

! Set up a SELECT/CASE depending on the
! response.
SELECT Func$
|
! This is the transmission case, a ratio of
! the powers measured by detector 2 (B) and
! detector 0 (R).
CASE """XFR:POW:RAT 2, o"""
|
! The transmission calibration has only one
! correction array.
Arrays=1

This is the reflection case, a ratio of
the powers measured by detector 1 (A) and
detector 0 (R).

CASE """XFR:POW:RAT 1, o"""
]

! The reflection calibration has 3 correction
! arrays.
Arrays=3
END SELECT
|
! Select the 16 bit integer binary data format.
QUTPUT @Hp8711;"FORM:DATA INT,16"
|

! Select normal byte order.
OQUTPUT @Hp8711;"FORM:BORD NORM"
|

! Request the first correction array from the a
! analyzer.

QUTPUT @Hp8711;"TRAC? CH1SCORR1"

|

! Turn on ASCII formatting on the I/0 path
! to read the header information.

8-41

Example Programs
Calibration

240 ASSIGN @Hp8711;FORMAT ON
]

241 !

242 ! Get the header, including the number of
243 ! of characters that will hold the number
244 ! of bytes value which follows.

250 ENTER @Hp8711 USING "¥%,A,D";A$,Digits

251 !

252 ! Get the rest of the header. The number
253 ! of bytes to capture in the correction
254 ! array will be placed in "Bytes". Note
255 ! the use of '"Digits'" in the IMAGE string.

260 ENTER Q@Hp8711 USING "%,"&VAL$(Digits)&"D";Bytes
261

262 ! Determine the number of points from the

263 ! number of bytes (6 bytes per point).

270 Points=Bytes/6

271 !

272 ! This example was set up in line 30 above
273 ! for 801 points. Edit this line and line 30
274 ! to allow other dimensions.

280 IF Points<>801 THEN

290 DISP "Arrays are not dimensioned for this calibration"
300 STOP

310 END IF

320 DISP '"Uploading (querying) calibration arrays"
321 !

322 ! Turn off ASCII formatting on the I/0 path.
330 ASSIGN @Hp8711;FORMAT OFF

331 !

332 ! Get the first error correction array.
340 ENTER @Hp8711;Corrl(*)

341 !

342 ! Turn on ASCII formatting.

350 ASSIGN @Hp8711;FORMAT ON

351 !

352 ! Get the "end of data" character.

360 ENTER Q@Hp8711;A$

361 !

362 ! For the reflection there are two more
363 ! arrays to read.

370 IF Arrays=3 THEN

8-42

371
372
373
380
390
391
392
393
400
410
420
430
440
450
451
452
453
460
461
462
463
464
470
471
472
473
474
480
481
482
490
491
492
493
494
500
501
502
510
511
512

Example Programs
Calibration

! Request and read in the second
! correction array.

QUTPUT @Hp8711;"TRAC? CH1SCORR2"
Read_array(@Hp8711,Corr2(*))

|

! Request and read in the third
! correction array.
OUTPUT @Hp8711;"TRAC? CH1SCORR3"
Read_array(@Hp8711,Corr3(*))
END IF
DISP "Calibration arrays have been uploaded."
WAIT 5
DISP "Downloading (setting) calibration arrays"
|
! Turn off correction before writing a
! calibration back into the analyzer.
OUTPUT @Hp8711;"SENS1:CORR:STAT OFF"
|

! Set the number of points for the correction
! arrays. (Not necessary in this example,

! but shown for emphasis.)

QUTPUT @Hp8711;"SENS1:SWE:POIN";Points

|

! Prepare the analyzer to receive the first
! correction array in the indefinite block
! length format.

OUTPUT @Hp8711;"TRAC CH1SCORR1, #0";

|

! Turn off ASCII formatting.
ASSIGN @Hp8711;FORMAT OFF
|

! Send the first correction array to the
! analyzer. The array transfer is

! terminated with the "END" signal.
OUTPUT @Hp8711;Corri(x),END

|

! Turn on ASCII formatting.
ASSIGN @Hp8711;FORMAT ON
|

! For a reflection array download, there

8-43

Example Programs

Calibration

513
520
521
522
523
530
540
541
542
543
550
560
570
571
572
580
590
600
601
602
603
604
605
606
610
620
630
640
650
660
670
680
690
700
710
711
713
714
715
716
717

are two more arrays.

IF Arrays=3 THEN

! Prepare the analyzer to receive the
! 2nd array, then output it.

OUTPUT @Hp8711;"TRAC CH1SCORR2, ";
Write_array(@Hp8711,Corr2(*))

|

! Prepare the analyzer to receive the
! 3rd array, then output it.

OQUTPUT @Hp8711;"TRAC CH1SCORR3, ";
Write_array(@Hp8711,Corr3(*))

END IF

Turn on the calibration just downloaded.

OUTPUT @Hp8711;"SENS1:CORR:STAT ON;*WAI"
DISP '"Calibration arrays have been downloaded."
END

Subprogram for reading binary data array from
the analyzer. The command requesting a specific
data array has already been sent prior to
calling this subprogram.

SUB Read_array(@Hp8711,INTEGER Array(*))

DIM A$[10]

INTEGER Digits,Bytes

ASSIGN @Hp8711;FORMAT ON

ENTER @Hp8711 USING "%,A,D";A$,Digits

ENTER @Hp8711 USING "%,"&VAL$(Digits)&"D";Bytes
ASSIGN @Hp8711;FORMAT OFF

ENTER QHp8711;Array(*)

ASSIGN @Hp8711;FORMAT ON

ENTER @Hp8711;A$

SUBEND

Subprogram for writing binary data array to

the analyzer. The command requesting a specific
data array has already been sent prior to
calling this subprogram.

§-44

720
730
740
750
760
770

SUB Write_array(@Hp8711,INTEGER Array(*))
OUTPUT @Hp8711;"#0";
ASSIGN @Hp8711;FORMAT OFF
OUTPUT @Hp8711;Array(*),END
ASSIGN @Hp8711;FORMAT ON
SUBEND

Example Programs
Calibration

§-45

Example Programs
Calibration

CALKIT Example Program

This instrument state file demonstrates the type of file required to download
user-defined calibration kits. To see an example of using this feature, refer to
“Writing or Editing Your Own Cal Kit File”, in Chapter 6 of the User’s Guide.

10 '$ Standard Definitions for HP 85054B Precision
Type-N Cal Kit.

11 !

12 '$ This is a Cal Kit definition file, which

13 '$ wuses the same format as a BASIC program.

14 '$ Lines that contain "!$" are comments.

15 1§

16 !'$ Put your Cal Kit file on a disk, and use the

17 '$ analyzer’s [SAVE/RECALL] [Recall State] keys

18 !'$ to load your custom Cal Kit into the analyzer.

20 !

30 !'$ Definitions for 50 Ohm jack (FEMALE center
contact) test

40 '$ ports, plug (MALE center contact) standards.
50 !

60 ! OPEN: § HP 85054-60027 Open Circuit Plug
70 ! ZO 50.0 $ Ohms

80 ! DELAY 57.993E-12 $ Sec

90 ! LOSS O0.8E+9 $ Ohms/Sec

100 ! CO 88.308E-15 $ Farads

110 ! Cl1 1667.2E-27 $ Farads/Hz

120 ! C2 -146.61E-36 $§ Farads/Hz"2

130 ! C3 9.7531E-45 § Farads/Hz"3

140 !

150 ! SHORT: § HP 85054-60025 Short Circuit Plug
160 ! ZO 50.0 $ Ohms

170 ! DELAY 63.078E-12 $ Sec

180 ! L0OSS 8.E+8 § Ohms/Sec

190 !

200 ! LOAD: § HP 00909-60011 Broadband Load Plug
210 ! ZO 50.0 $ Ohms

220 ! DELAY 0.0 $ Sec

230 ! LOSS 0.0 $§ Ohms/Sec

8-46

240
250
260
270
280
290
300

END

THRU:

ZO 50.0 $ Ohms

DELAY
LOSS

196 .0E-12 $§ Sec
2.2E+9 $ Ohms/Sec

Example Programs
Calibration

$ HP 85054-60038 Plug to Plug Adapter

§-47

Instrument State and Save/Recall

LEARNSTR Using the learn string to upload and download instrument
states.

SAVERCL Saving and recalling instrument states, calibrations and data.
The example also demonstrates saving data in an ASCII file
that includes both magnitude and frequency information.

8-48

Example Programs
Instrument State and Save/Recall

LEARNSTR Example Program

This program demonstrates how to upload and download instrument states
using the learn string. The learn string is a fast and easy way to read an
instrument state. It is read out using the *LRN? query (an IEEE 488.2
common commands). To restore the learn string simply output the string to
the analyzer.

The learn string contains a mnemonic at the beginning that tells the analyzer
to restore the instrument state.

The learn string is transferred as a block. The header is ASCII formatted and
the data is in the instrument’s internal binary format. The number of bytes
in the block of data is determined by the instrument state (no more than
20000 bytes).

"SYST:SET #<digits><bytes><learn string data>"

The “long” learnstring, in addition to the instrument state like the normal
learnstring, will include data and calibration arrays IF they are selected using
the Define Save function under SAVE RECALL. The SCPI equivalent command
for saving the calibration arrays is added before the “long” learnstring query.

8-49

Example Programs
Instrument State and Save/Recall

Lines 20-80 are explained in the introduction to the example programs
section. They determine which system controller is being used and prepare
the instrument for remote operation.

1 !Filename: LEARNSTR

2 !

3 ! Description:

4 ! 1. Query the learn string

5 ! 2. Preset the analyzer

6 ! 3. Send the learn string,

7 ! restoring the previous state.
8 |

10 DIM Learnstr$[20000]
20 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

30 ASSIGN @Hp8711 TO 800

40 ELSE

50 ASSIGN @Hp8711 TO 716

60 ABORT 7

70 CLEAR 716

80 END IF

81 !

82 ! Request the learnstring. If the "long"

83 ! learnstring is desired, comment the line

84 ! below, and uncomment the line after it.

85 ! The "long" learnstring, in addition to

86 ! the instrument state like the normal

87 ! learnstring, will include data and

88 ! calibration arrays IF they are selected

89 ! using the Define Save function under

90 ! SAVE RECALL. The SCPI equivalent command

91 ! for saving the calibration arrays is

92 ! added before the '"long" learnstring query.

94 OUTPUT @Hp8711;"*LRN?"

95 ! OUTPUT @Hp8711;"MMEM:STOR:STAT:CORR ON;
:SYST:SET:LRNL?"

26 !

o7 ! Read the learnstring from the analyzer.

98 ! The USING "-K" format allows the data

99 ! being transmitted to include characters

100 ! (such as the line feed character) that

101 ! would otherwise terminate the learnstring

8-50

102
103
110
120
121
122
130
131
132
140
150
160
161
162
163
164
165
170
180
190

Example Programs
Instrument State and Save/Recall

! request prematurely.

ENTER @Hp8711 USING "-K";Learnstr$
DISP "Learn string has been read"
WAIT 5

|

! Preset the analyzer.

QUTPUT @Hp8711;"SYST:PRES;*0PC?"

|

! Wait for the preset operation to complete.
ENTER @Hp8711;0pc

DISP "Instrument has been PRESET"

WAIT 5

|

! Output the learnstring to the analyzer.
! The mnemonic is included in the string,
! so no command preceding "Learnstr$" is
! necessary.

OUTPUT @Hp8711;Learnstr$

DISP "Instrument state has been restored"
END

8-b1

Example Programs
Instrument State and Save/Recall

10
20
30
40
50
60
70
71
72

SAVERCL Example Program

This program demonstrates how to save instrument states, calibrations

and data to a mass storage device. The device used in this example is the
analyzer’s internal 3.5” disk drive. The only change needed to use this
program with the internal non-volatile memory is to change the mass storage
unit specifier.

The four choices are the internal floppy disk drive (INT:), the internal
non-volatile memory, (MEM:), the internal volatile memory, (RAM:), and

an external HP-IB floppy disk drive (EXT:). To perform a save/recall to an
external disk drive requires passing control of the HP-IB from the controller
to the analyzer. For more information on passing control of the bus refer to
Chapter 3, “Passing Control,” or the PASSCTRL example program.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 80-130 are an example of saving an instrument state and calibration on
the internal floppy disk drive.

Lines 190-200 are an example of recalling that instrument state and
calibration.

Lines 210-230 are an example of saving a data trace (magnitude and
frequency values) to an ASCII formatted file on the internal floppy disk drive.
This file cannot be recalled into the instrument. It can, however, be imported
directly into spreadsheets and word processors.

'Filename: SAVERCL
]

IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

ASSIGN @Hp8711 TO 800
ELSE
ASSIGN @Hp8711 TO 716
ABORT 7
CLEAR 716
END IF

|
! Select the internal floppy disk drive

8-b2

73

80

81

82

83

84

90

91

92

93

94

100
101
102
103
104
110
111
112
113
114
115
120
130
140
141
142
143
150
160
170
180
181
182
183
184
185
190
200
201
202

Example Programs
Instrument State and Save/Recall

! as the mass storage device.
OUTPUT @Hp8711;"MMEM:MSIS ’INT:’"
|

! Turn on the saving of the instrument state
! as part of the '"Define Save" function under
! SAVE RECALL.

OUTPUT @Hp8711;"MMEM:STOR:STAT:IST ON"

|

! Turn on the saving of the calibration

! as part of the '"Define Save" function under
! SAVE RECALL.

OUTPUT @Hp8711;"MMEM:STOR:STAT:CORR ON"

|

! Turn off the saving of the data

! as part of the '"Define Save" function under
! SAVE RECALL.

OUTPUT @Hp8711;"MMEM:STOR:STAT:TRAC OFF"

|

! Save the current defined state (STAT 1) into

! a file named "FILTER". Use *0PC? to make

! sure the operation is completed before any

! other operation begins.

OUTPUT @Hp8711;"MMEM:STOR:STAT 1,’FILTER’ ;*0PC?"
ENTER @Hp8711;0pc

DISP "Instrument state and calibration have been saved"
|

! Preset the instrument so that the change in state
! is easy to see when it is recalled.

QUTPUT @Hp8711;"SYST:PRES;*0PC?"

ENTER @Hp8711;0pc

DISP "Instrument has been PRESET"

Recall the file "FILTER" from the internal

floppy disk drive. This becomes the new instrument
state. Use of the *0PC query allows hold off of

! further commands until the analyzer is reconfigured.
QUTPUT @Hp8711;"MMEM:LOAD:STAT 1,’INT:FILTER’;*0PC?"
ENTER @Hp8711;0pc

|

! Take a single sweep to ensure that valid measurement

8-53

Example Programs
Instrument State and Save/Recall

203 ! data is acquired.
210 OUTPUT @Hp8711;"ABOR;:INIT:CONT OFF;:INIT;*WAI"
220 DISP "Instrument state and calibration have been recalled"

221 !
222 ! Save that measurement data into an ASCII file
223 ! called "DATAO001" on the internal floppy disk drive.

230 OUTPUT @Hp8711;"MMEM:STOR:TRAC CH1FDATA,’INT:DATAOOO1’"
240 DISP "Data has been saved (ASCII format)"
250 END

§-54

Hardcopy Control

PRINTPLT

PASSCTRL

FAST_PRT

Using the serial and parallel ports for hardcopy output. The
example also demonstrates plotting test results to an HPGL
file.

Using pass control and the HP-IB for hardcopy output. The
example uses an HP-IB printer.

Provides fast graph dumps to PCL5 printers.

8-55

Example Programs
Hardcopy Control

PRINTPLT Example Program

This program demonstrates how to send a hardcopy to a printer on the serial
interface. This is done by selecting the appropriate device, setting up the
baud rate and hardware handshaking, and sending the command to print or
plot. The *0PC? query is used in this example to indicate when the printout
is complete. Another method of obtaining the same results is to monitor the
Hardcopy in Progress bit (bit 9 in the Operational Status Register). More
information on printing or plotting is available in the User’s Guide.

Lines 10-70 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 80-150 demonstrate sending a hardcopy output to a printer connected
to the serial port. The same program could be used to send hardcopy output
to a device on the parallel port. The only changes would be deleting lines
100-110 and changing line 90 to read HCOP:DEV :PORT PAR.

Lines 160-260 demonstrate how to create an HPGL file (plotter language) and
send it to the disk in the internal 3.5” disk drive. HPGL files are supported
by many applications including the leading word processors and desktop
publishing products.

1 'Filename: PRINTPLT

2 !

3 ! Description:

4 ! 1. Select serial port. Configure it.

5 ! 2. Dump table of trace values

6 ! 3. Re-configure hardcopy items to dump
7 ! 4. Dump HP-GL file to internal floppy

8 !

10 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
20 ASSIGN @Hp8711 TO 800

30 ELSE

40 ASSIGN @Hp8711 TO 716

50 ABORT 7

60 CLEAR 716

70 END IF

71 !

72 ! Select the output language (PCL-Printer

8-56

73

74

80

81

82

90

91

92

100
101
102
103
104
110
111
112
113
114
120
130
140
141
142
143
144
150
151
152
160
161
162
170
171
172
173
180
181
182
190
191
192

Example Programs
Hardcopy Control

! Control Language) and the hardcopy port

! to serial.

OUTPUT @Hp8711;"HCOP:DEV:LANG PCL;PORT SER"
|

! Select baud rate to 19200.
OUTPUT @Hp8711;"SYST:COMM:SER:TRAN:BAUD 19200"
]

! Select the handshaking protocol to Xon/Xoff.
OUTPUT @Hp8711;"SYST:COMM:SER:TRAN:HAND XON"
|

! Select the type of output to table, which
! is the same as the softkey List Trace

! Values under the Define Hardcopy menu.
QUTPUT @Hp8711;"HCOP:DEV:MODE TABL"

|

! Send the command to start a hardcopy, and

! use *0PC query to make sure the hardcopy is
! complete before continuing.

QUTPUT @Hp8711;"HCOP;*0PC?"

ENTER @Hp8711;0pc

DISP "Hardcopy to serial printer - COMPLETE!"
|

! Select the HPGL language and the hardcopy

! port to be the currently selected mass memory
! device.

OUTPUT @Hp8711;"HCOP:DEV:LANG HPGL;PORT MMEM"
|

! Include trace data in the plot.
OUTPUT @Hp8711;"HCOP:ITEM:TRAC:STAT ON"
|

! Turn graticule off in the hardcopy dump.
OUTPUT @Hp8711;"HCOP:ITEM:GRAT:STAT OFF"
|

! Include frequency and measurement
! annotation.

OUTPUT @Hp8711;"HCOP:ITEM:ANN:STAT ON"
]

! Include marker symbols.
OUTPUT @Hp8711;"HCOP:ITEM:MARK:STAT ON"
|

! Include title (and/or time/date if

8-57

Example Programs

Hardcopy Control
193 ! already selected).
200 OUTPUT @Hp8711;"HCOP:ITEM:TITL:STAT ON"
201 !
202 ! Define the hardcopy to be both the graph
203 ! and a marker table.
210 OUTPUT @Hp8711;"HCOP:DEV:MODE GMAR"
211 !
212 ! Send the command to plot and use *0PC
213 ! query to wait for finish.
220 OUTPUT @Hp8711;"HCOP;*0PC?"
230 ENTER @Hp8711;0pc
240 DISP '"Plot to floppy disk - COMPLETE!"
250 END

8-58

Example Programs
Hardcopy Control

PASSCTRL Example Program

This program demonstrates how to send a hardcopy to an HP-IB printer.

This is done by passing active control of the bus to the analyzer so it can
control the printer. More information about passing control to the analyzer is
available in Chapter 3, “Passing Control.”

Lines 10-90 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

100
101

'Filename: PASSCTRL

|
! Description:

! External controller runs this program, which
! instructs the analyzer to perform a hardcopy
! and then passes control to the analyzer.

! Analyzer performs hardcopy over HP-IB

! to printer at 701, then passes control back.
|

|

|

|

|

|

This program only works on controllers which
implement pass control properly. HP s700
computers running BASIC-UX 7.0x will need

to upgrade to a newer BASIC-UX version.

IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
Internal=1
ELSE
ASSIGN @Hp8711 TO 716
Internal=0
ABORT 7
CLEAR 716
END IF
|
! Select the language to PCL (Printer
! Control Language) and the output port
! to HP-IB.
OUTPUT @Hp8711;"HCOP:DEV:LANG PCL;PORT GPIB"

8-59

Example Programs

Hardcopy Control

102
103
110
111
112
120
121
122
130
131
132
140
150
151
152
160
161
162
163
170
171
172
173
180
181
182
183
190
200
201
202
210
211
212
213
220
230
231
233
234
240

! Select the HP-IB address for the hardcopy
! device on the HP-IB.

OUTPUT @Hp8711;"SYST:COMM:GPIB:HCOP:ADDR 1"
|

! Set the output to graph only.
OQUTPUT @Hp8711;"HCOP:DEV:MODE GRAP"
|

! If the internal controller is being used...
IF Internal=1 THEN
|
! then make it System Controller of HP-IB
OUTPUT @Hp8711;"SYST:COMM:GPIB:CONT ON"
END IF
|
! Clear Status Registers
OUTPUT @Hp8711;"*CLS"
|

! Enable the Request Control bit in the Event
! Status Register.

OQUTPUT @Hp8711;"*ESE 2"

|

! Clear the Service Request enable register;
! SRQ is not being used.

OUTPUT @QHp8711;"*SRE 0"

|

! Send the hardcopy command to start the
! print.
OUTPUT @Hp8711;"HCOP"
LOOP
|
! Read the status byte using Serial Poll.
Stat=SPOLL(@Hp8711)
|
! Exit when the analyzer requests active control
! of HP-IB from the system controller.
EXIT IF BIT(Stat,5)=1
END LOOP
|
! Now system controller passes control to
! the analyzer.
PASS CONTROL @QHp8711

8-60

250
260
261
262
263
270
280
290
291
300
301
303
304
305
306
307
308
309
310
311
312
313
314
320
330
340
350
360

Example Programs
Hardcopy Control

DISP "Hardcopy in Progress...';
IF Internal=1 THEN
! If using the internal IBASIC controller,
! then use the *0PC query method to wait
! for hardcopy completion.
QUTPUT @Hp8711;"*0PC?"
ENTER @Hp8711;0pc

ELSE

! If external computer control, then...
LOOP

! Monitor the HP-IB status in the

external computer’s HP-IB status

! register. Here, the HP-IB interface

code 7 register 6 status is requested
and put into "Hpib".

bISP nLty
WAIT 1 ! No need to poll rapidly
STATUS 7,6;Hpib

system controller (bit 6 set), then exit.

|
! When active control is returned to the
|
|

(This fails on s700s running BASIC 7.0x)
EXIT IF BIT(Hpib,6)=1
END LOOP
END IF

DISP
END

"HARDCOPY COMPLETE!"

8-61

Example Programs

Hardcopy Control

FAST_PRT Example Program

This program configures a PCL5 printer to accept HP-GL graphics commands
from the analyzer. The program executes a hardcopy which causes the
analyzer to send HP-GL commands to the parallel port PCL5 printer. Provides
up to 10x speed improvement of some hardcopies.

10
20
30
40
50
60
70

80
90
100

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

FAST_PRT

This program is designed to set up a PCL5 printer
connected to the parallel port of the analyzer to
accept HP-GL syntax. HP-GL gives fast graph dumps.

Connect your PCL5 printer to the parallel
printer of the
analyzer, then run the program.

Once the parallel printer has been configured
to accept

! HPGL commands, a hardcopy is done, the printer is

reset to normal mode, and the page is ejected.
DIM A$[50]

IF POS(SYSTEM$("SYSTEM ID"),"HP 871'") THEN
ASSIGN @Rfna TO 800
Internal=1
Isc=8

ELSE
ASSIGN @Rfna TO 716
Internal=0
Isc=T7
ABORT 7
CLEAR 716

END IF

Define the hardcopy device
OQUTPUT @Rfna;"HCOP:DEV:LANG HPGL;PORT CENT"

8-62

310

320
330
340
350
360
370

380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

610
620
630
640
650

Example Programs
Hardcopy Control

! Define PCL5 escape codes needed to set up
HPGL commands:

DATA @E

DATA @&12A

DATA 0&aOL@&a4000M@&10E
DATA @*c7400x5650y

'DATA @+*c5500x5650y

'DATA @+%c4255x3283y

Reset, Eject page

Page size 8.5 x 11

No margins

10.28 x 7.85 size 720/in
if Marker table included
portrait,remove
Landscape Mode

DATA @&110 ! Landscape Mode

DATA @*xp50x50y ! Cursor to anchor point

DATA @*cOT ! Set picture anchor point
DATA @*r-3U ! CMY Palette

!DATA @xriU ! Monochrome optional

DATA @1B ! HPGL Mode

DATA $! dump plot

DATA @J,0A ! Exit HPGL Mode

DATA QE ! Eject page

DATA DONE ! End of defined escape codes

|
! Send the defined escape codes to the printer
LOOP
READ A$
EXIT IF A$="DONE"
FOR I=1 TO LEN(4$)
SELECT A$[I;1]
CASE "@" ! Escape Character
QUTPUT @Rfna;"DIAG:PORT:WRITE 15,0,27"
CASE '"$" ! Dump the plot
OUTPUT @Rfna;"HCOP;*WAI"
CASE ELSE! Send Character
OUTPUT @Rfna;"DIAG:PORT:WRITE 15,0,
";NUM(A$[I;1])
END SELECT
NEXT I
END LOOP
|

END

8-63

Service Request

SRQ Generating a service request interrupt. The example uses
the status reporting structure to generate an interrupt as
soon as averaging is complete.

§-64

Example Programs
Service Request

SRQ Example Program

This program demonstrates generating a service request interrupt. The SRQ
is used to indicate when averaging is complete. More information on service
requests and the status registers is available in Chapter 5, “Using the Status
Registers.”

In this program, the STATus :PRESet executed in line 130 has the effect of
setting all bits in the averaging status transition registers (positive transitions
to 0, negative transitions to 1). It also sets up the operational status
transition registers (positive transitions to 1, negative transitions to 0). These
are the states needed to generate an interrupt when averaging is complete.

Lines 10-90 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

1 'Filename: SRQ

2 !

3 ! Description:

4 ! Set an SRQ to occur when averaging is complete.
5 ! Turn on averaging, and set to 8 averages.

6 ! Initiate sweeps. SRQ will occur after 8 sweeps.
7 ! Wait in a do-nothing loop, checking SRQ flag.
8 ! Display message after SRQ flag is set.

9 !

10 IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN

20 ASSIGN @Hp8711 TO 800

30 Isc=8

40 ELSE

50 ASSIGN @Hp8711 TO 716

60 Isc=7

70 ABORT 7

80 CLEAR 716

20 END IF

91 !

92 ! Clear status registers.

100 OUTPUT @Hp8711;"*CLS"

101 !

102 ! Clear the Service Request Enable register.

8-65

Example Programs

Service Request

110
111
112
120
121
122
130
131
132
133
134
140
141
142
143
144
145
146
147
148
149
150
152
153
154
155
160
161
162
163
164
170
171
172
180
181
182
190
191
192
200

OUTPUT @Hp8711;"*SRE 0"
]

! Clear the Standard Event Status Enable register.
OUTPUT @Hp8711;"*ESE 0"
|

! Preset the remaining status registers.
OUTPUT @Hp8711;"STAT:PRES"
|

! Set operation status register to report

! to the status byte on POSITIVE transition of
! the averaging bit.

OQUTPUT @Hp8711;"STAT:0PER:ENAB 256"

! Set averaging status register to report to

! operational status register on NEGATIVE transition
! of the averaging done bits. The NEGATIVE
transition needs to be detected because the
averaging bit 0 is set to 1 while the analyzer

is sweeping on channel 1 and the number of

sweeps completed since averaging restart is

less than the averaging factor. When the bit

goes back to 0, the averaging is done.

OUTPUT ©@Hp8711;"STAT:0PER:AVER:ENAB 1"

! Enable the operational status bit in the status
! byte to generate an SRQ.

QUTPUT @Hp8711;"*SRE 128"

|

! On an interrupt from HP-IB "Isc" (Interface

! Select Code) SRQ bit (2), branch to the interrupt
! service routine "Srq_handler".

ON INTR Isc,2 GOSUB Srq_handler

|

! Now enable the interrupt on SRQ (Service Request).
ENABLE INTR Isc;2

|

! Set averaging factor to 8.

OUTPUT @Hp8711;"SENS1:AVER:COUN 8;*WAI"

|

! Turn on averaging and restart.
OUTPUT @Hp8711;"SENS1:AVER ON;AVER:CLE;*WAI"

8-66

201
202
210
211
212
213
214
216
217
220
225
230
240
245
250
260
261
262
265
270
280
290
300
301
302
303
304
310
311
312
313
314
320
321
322
330
340
341
342
343
350

Example Programs
Service Request

! Turn on continuous sweep trigger mode.
OUTPUT @Hp8711;"ABOR;:INIT1:CONT ON;*WAI"

|

! Initialize flag indicating when averaging done
! to 0. Then loop continuously until the

! interrupt is detected, and the interrupt

! service routine acknowledges the

! interrupt and sets the flag to 1.

Avg_done=0

DISP "Waiting for SRQ on averaging complete.";
LO0OP

DISP ".";

WAIT 0.1 ! Slow down dots
EXIT IF Avg_done=1
END LOOP

! Display desired completion message.

DISP
DISP "Got SRQ. Averaging Complete!"
STOP
|
Srq_handler: ! Interrupt Service Routine

|
! Determine that the analyzer was actually
! the instrument that generated the
! interrupt.
Stb=SPOLL(@Hp8711)
|
! Determine if the operation status register
! caused the interrupt by looking at bit 7
! of the result of the serial poll.
IF BINAND(Stb,128)<>0 THEN
|
! Read the operational status event register.
QUTPUT @Hp8711;"STAT:0PER:EVEN?"
ENTER @Hp8711;0p_event
|

! Determine if the averaging status register
! bit 8 is set.
IF BINAND(Op_event,256)<>0 THEN

8-67

Example Programs
Service Request

351 !

352 ! If so, then set flag indicating
353 ! averaging done.

360 Avg_done=1

370 END IF

380 END IF

390 RETURN

400 END

8-68

File Transfer Over HP-IB

Two example programs demonstrate how to transfer files from the analyzer’s
mass memory to and from mass memory of an external controller via HP-IB.
Instrument states and program files may be transferred to or from the
analyzers internal non-volatile memory, (MEM:), internal-volatile memory,
(RAM:), and the internal 3.5” floppy disk, (INT:).

This can be a convenient method to archive data and programs to a central
large mass storage hard drive.

To run these programs, connect an external controller to the analyzer with an
HP-IB cable.

GETFILE Transfers a file from the analyzer to an external controller.

PUTFILE Transfers a file from an external controller to the analyzer.

8-69

Example Programs
File Transfer Over HP-IB

GETFILE Example Program

Files are transferred from the analyzer to an external RMB controller. Run
this program on your external RMB controller. The program will prompt you
to specify which analyzer program to transfer, the mass storage unit (MEM:),
internal non-volatile memory, (RAM:), internal volatile memory, or (INT:),
internal 3.5” floppy disk drive and the name of the file to be created on your
external controller mass storage. Transfers instrument state files or program

files.
10 !GETFILE
20 !
30 ! This program will get files from 871X specified
mass storage to a host
40 ! mass storage. The user specifies the mass storage unit,
the filename
50 ! of the 871X and the file on the host controller
to be created.
60 !
110 !
120 DIM B1lk$(1:4)[32000]
! Max file size = 4 * 32000 = 128000 bytes
130 !
140 DIM Filename$[15] ,Mass$[15] ,Dest$[15]
150 INTEGER Wordi
160 ASSIGN @Hp8712 TO 716
170 CLEAR @Hp8712
180 BEEP
190 Mass$="INT"
200 Dest$="File8T71X"
210 INPUT "Enter the name of the 871X file to get.',Filename$
220 INPUT "Enter 871X Mass Storage (mem,INT,ram)",Mass$
260 INPUT "Enter host filename (default=’File871X’)",Dest$
270 DISP "READING FILE "&Mass$&":"&Filename$&" ..."
280 OUTPUT QHp8712;"MMEM:TRANSFER? ’"&Mass$&":"&Filename$&"’"
290 ENTER @Hp8712 USING "#,W";Wordi
300 ENTER @Hp8712 USING "%,-K";Blk$(*)
310 FOR I=1 TO 4
320 Filelength=LEN(B1k$(I))+Filelength

8-70

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

NEXT I
BEEP
PRINT "Length'",Filelength
DISP "Creating new file..."
ON ERROR GOTO Save_file
PURGE Dest$
Save_file: !
OFF ERROR
CREATE Dest$,Filelength
ASSIGN @File TO Dest$;FORMAT ON
OUTPUT QFile;Blk$(*);
ASSIGN @File TO *
DISP "File "&Dest$&" created."
BEEP
END

Example Programs
File Transfer Over HP-IB

8-71

Example Programs
File Transfer Over HP-IB

PUTFILE Example Program

PUTFILE - Files are transferred from the RMB mass storage to the analyzer.
Run this program on your external RMB controller. The program will prompt
you to specify the file to transfer and where to transfer the file. BDATA or
ASCII files may be transfered to the analyzer’s internal non-volatile memory,
(MEM:), the internal volatile memory, (RAM:), or the internal built in 3.5”
floppy disk, (INT:).

10 ! PUTFILE

20 !

30 ! This program will transfer files from RMB mass mem to the
specified

40 ! 871X mass storage. The user specifies the 871X mass
storage unit,

50 ! the 871X file to be created, file type, and file to be
transferred.

60 !

110 !

120 DIM A$(1:4)[32000]

130 DIM Filename$[15] ,Mass$[15],Source$[15]

140 INTEGER Wordil

150 Bdat$="n"

160 ASSIGN @Hp8712 TO 716

170 CLEAR @Hp8712

180 BEEP

190 Mass$="INT"

200 INPUT "Enter the name of the 871X file to create',Filename$
210 INPUT "File type BDAT? (y,n) [n]",Bdat$

220 INPUT "Enter the 871X Mass Storage (mem,INT,ram)",Mass$
260 INPUT "Enter source filename",Source$

270 DISP "READING FILE "&Source$&" ..."

280 ASSIGN @File TO Source$;FORMAT OFF

290 ENTER @File USING "¥%,-K";A$ (%)

300 ASSIGN @File TO *

310 'PRINT A$

320 BEEP

330 Length=0

340 FOR I=1 TO 4

8-72

350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

610
620

Example Programs

File Transfer Over HP-1B

Length=LEN(A$(I))+Length
NEXT T
DISP "TRANSFERRING FILE = ",Length
IF Bdat$="y" OR Bdat$="Y" THEN
IF Length<10 THEN
Blk$="1"&VAL$ (Length)
ELSE
IF Length<100 THEN
Blk$="2"&VAL$ (Length)
ELSE
IF Length<1000 THEN
B1k$="3"&VAL$ (Length)
ELSE
IF Length<10000 THEN
Blk$="4"&VAL$ (Length)
ELSE
IF Length<100000 THEN
Blk$="5"&VAL$ (Length)
ELSE
Blk$="6"&VAL$ (Length)
END IF
END IF
END IF
END IF
END IF
OUTPUT @Hp8712;"MMEM:TRANSFER:BDAT ’"&Mass$&"
:"gFilename$&"’ ,#"&B1k$;
ELSE
OUTPUT @Hp8712;"MMEM:TRANSFER

*gMass$&' :"&Filename$&" ’ ,#0";

630
640
650
660
670

END IF
OUTPUT @Hp8712;A$(*) ;END

DISP "871X file "&Mass$&":"&Filename$&" created."”

BEEP
END

8-73

Customized Display

GRAPHICS

Using graphics and softkeys to create customized procedures.
The example demonstrates the use of some of the user
graphics commands including the one to erase a previously
drawn line. It also demonstrates use of the softkeys and
detecting a front panel keypress with the service request
interrupt process.

8-74

Example Programs
Customized Display

GRAPHICS Example Program

This program demonstrates how to use the analyzer’s user graphics
commands to draw setup diagrams. It also demonstrates generating a service
request in response to a keyboard interrupt. More information on user
graphics commands is available in Chapter 7, “Using Graphics,” and in
Chapter 12, “SCPI Command Summary”. Information on generating a service
request and using the status reporting structure is in Chapter 5, “Using the
Status Registers.”

Note that this program uses the analyzer’s user graphics commands. If
the IBASIC option is installed, graphics may sometimes be more easily
implemented using BASIC commands such as POLYGON and RECTANGLE.
For further information, see the “BARCODE” program description in the
HP Instrument BASIC Users Handbook.

Lines 10-110 are explained in the introduction to the example programs
section. They determine which system controller is being used, set flags, and
prepare the instrument for remote operation.

Lines 170-240 draw and label a representation of an HP 8711 for a
connection diagram. This example is a simple front view from the top.

Lines 250-450 draw the connection needed for a normalization. The
operator is prompted to make this connection and to press a softkey on the
instrument. A flashing message is used to attract attention.

NOTE

This program works properly onfy when option 1C2, IBASIC, has been installed. Refer to program
GRAPHZ if your analyzer does not have the IBASIC option installed.

8-75

Example Programs
Customized Display

Program

Running

RF OUT RFIN
HP 8711 - - NORMAL 1 ZE
L

Connect THRU between RF OUT and RF IN

>>>>> Press NORMALIZE —<<<<<

»Chan 2:Transmission Log Mag 10.0 dB/ Ref 0.00 dB

PAUSE

Start 150.000 MHz Stop 250.000 MHz

GRAPHICS example connection diagram

Lines 460-580 perform the normalization, erase the prompts (without erasing
the whole screen) and prepare for the test.

Lines 590-730 are a branching routine that handles the service request
generated interrupts used by the external controller.

Filename: GRAPHICS

Description: Draws a simple connection diagram
in the IBASIC window, and displays a softkey.

NOTE: This program works properly ONLY
when option 1C2, IBASIC, has been installed.
Refer to program GRAPH2 if no IBASIC option.

© 0O ~NO O WN

8-76

10

20

30

40

50

60

70

80

90

100
110
111
112
113
120
121
122
130
131
132
133
134
140
141
142
143
150
160
161
162
170
171
172
173
174
175
180

181
182
190

Example Programs
Customized Display

IF POS(SYSTEM$("SYSTEM ID"),"HP 871") THEN
ASSIGN @Hp8711 TO 800
Internal=1
Isc=8
ELSE
ASSIGN @Hp8711 TO 716
Internal=0
Isc=7
ABORT 7
CLEAR 716
END IF
|
! Allocate an IBASIC display partition
! to show the graphics.
QUTPUT @Hp8711;"DISP:PROG UPP"
|

! Clear the IBASIC display partition.
OUTPUT @Hp8711;"DISP:WIND10:GRAP:CLE"
|

! Turn on channel 2 for measurements. The
! lower part of the display is

! devoted to display of measurements.
OQUTPUT @Hp8711;"SENS2:STAT ON;*WAI"

|

! Take a single controlled sweep to ensure

! a valid measurement using *0PC query.

OUTPUT @Hp8711;"ABOR;:INIT2:CONT OFF;:INIT2;*0PC?"
ENTER @Hp8711;0pc

|

! Select the bright '"pen" and bold font.
OUTPUT @Hp8711;"DISP:WIND10:GRAP:COL 1;LAB:FONT BOLD"

|
! Draw a label reading "HP 8711B" at 45 pixels
! to the right and 120 pixels above the origin.
! The origin is the lower left corner of the

! current graphics window (upper half).

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 45,120
;LAB ’HP 8711B’"

I

! Draw a box to represent the analyzer.

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 30,175

8-

Example Programs
Customized Display

;DRAW 30,140;DRAW 480,140;DRAW 480,175"
191 !
192 ! Draw a box to represent the REFLECTION RF OUT port.
200 QUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 275,140
;DRAW 275,130;DRAW 305,130;DRAW 305,140"
201 ! Draw a box to represent the TRANSMISSION RF IN port.
210 QUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 410,140
;DRAW 410,130;DRAW 440,130;DRAW 440,140"
211 ! Change the text font to small, which is the
212 ! same as that used for PRINT or DISP statements.
220 OQUTPUT @Hp8711;"DISP:WIND10:GRAP:LAB:FONT SMAL"
221 !
222 ! Label the RF OUT port.

230 OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 250,145
;LAB ’RF 0UT’"

231 !

232 ! Label the RF IN port.

240 OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 395,145
;LAB ’RF IN’"

241 !

250 Normalize: !

251 !

252 ! Draw a through connection between the RF 0OUT

253 ! and RF IN ports.

260 QUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 290,125
;DRAW 290,110;DRAW 425,110;DRAW 425,125"

261 ! Prompt the operator to connect the through.

270 OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 1,50
;LAB ’Connect THRU between RF OUT and RF IN’"

280 IF Internal=1 THEN

281 ! If using the IBASIC (internal) controller,
282 ! then use the "ON KEY" method to handle
283 ! user interface.

290 ON KEY 1 LABEL "NORMALIZE" RECOVER Norm
300 ELSE

301 ! If using an external controller...

302 !

303 ! Initialize flag for checking on keyboard
304 ! interrupts.

310 Keycode=-1

311 !

8-78

312
320
321
322
323
330
331
332
333
334
335
336
337
338
340
341
342
343
350
351
352
353
360
370
380
381
382
390
391
392
393
394
395
396
400
410

420
430

440

Example Programs
Customized Display

! Label softkey 1.
OUTPUT @Hp8711;"DISP:MENU:KEY1 ’NORMALIZE’"
|

! Clear the status register and event status
! register.
OUTPUT @Hp8711;"*CLS;*ESE 0"

|
! Preset the other status registers.

! Enable the Device Status register to report
! to the Status Byte on positive transition

! of bit O (key press). Enable the Status

! Byte to generate an interrupt when the

! Device Status register’s summary bit

! changes.

OUTPUT @Hp8711;"STAT:PRES;DEV:ENAB 1;*SRE 4"
|

! Clear the key queue to ensure that previous
! key presses do not generate an interrupt.
QUTPUT @Hp8711;"SYST:KEY:QUE:CLE"

|

! Set up and enable the interrupt on the HP-IB
! when a service request is received.

ON INTR Isc,5 RECOVER Srq

ENABLE INTR Isc;2

END IF

Turn off the graphics buffer.

OUTPUT @Hp8711;"DISP:WIND10:GRAP:BUFF OFF"

Loop for waiting for press of the NORMALIZE key.
The two different output statements along with
the wait statements create a blinking effect.
There is not exit from this loop other than

a keyboard interrupt.

LOOP

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 55,18
;LAB ’>>>>> Press NORMALIZE <<<<K’"

WAIT .2

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 55,18
;LAB Press NORMALIZE >

WAIT .2

8-79

Example Programs
Customized Display

450 END LOOP

451 !

460 Norm: ! Entry point to wait for a key press.
461 !

462 ! If wrong key pressed, return to Normalize.

470 IF Keycode<>0 THEN GOTO Normalize
480 OFF KEY

481 !

482 ! The through should now be connected and

483 ! ready to measure.

484 !

485 ! Turn the graphics buffer back on.

490 OUTPUT @Hp8711;"DISP:WIND10:GRAP:BUFF ON"

491 !

492 ! Select the "erase" pen (pen color 0) and
493 ! erase the prompts.

500 OUTPUT @Hp8711;"DISP:WIND10:GRAP:COL O;MOVE 55,18
;LAB ?>>>>> Press NORMALIZE <<<<<?"

510 OQUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 1,50
;LAB ’Connect THRU between RF OUT and RF IN’"

520 OUTPUT @Hp8711;"DISP:MENU:KEY1 °’ an
]

521 !

522 ! Display the active data trace only. Turn off
523 ! any previous normalization.

530 OUTPUT @Hp8711;"CALC2:MATH (IMPL)"

531 !

532 ! Take a single sweep on channel 2.

540 QUTPUT @Hp8711;"INIT2;*WAIL"

541 !

542 ! Copy the new data trace into the memory array.
550 OUTPUT @Hp8711;"TRAC CH2SMEM,CH2SDATA"

551 !

552 ! Normalize; that is, display the active data
553 ! relative to the memory trace.

560 OUTPUT @Hp8711;"CALC2:MATH (IMPL/CH2SMEM)"

561 !

562 ! Display only one of the traces (the normalized
563 ! trace).

570 OUTPUT @Hp8711;"DISP:WIND2:TRAC1 ON;TRAC2 OFF"
571 !
572 ! Erase the through connect and select pen color 1 again.

8-80

580

590
600
610

611
612
613
614
620
621
622
623
630
631
632
640
650
651
652
660
661
670
680
690
700
701
702
703
710
720
730

Example Programs

OUTPUT @Hp8711;"DISP:WIND10:GRAP:MOVE 290,110
;DRAW 425,110;DRAW 425,125;C0L 1"
STOP

Srq: ! This is the branching routine that handles

service request
! generated interrupts.

|
! Do a serial poll to find out if analyzer generated the
! interrupt.
Stb=SPOLL(@Hp8711)
|
! Determine if the Device Status register’s summary
! bit (bit 2 of the Status Byte) has been set.
IF BINAND(Stb,4)<>0 THEN

|

! If so, then get the Device Status Register contents.

OUTPUT @Hp8711;"STAT:DEV:EVEN?"

ENTER @Hp8711;Dev_event

|

! Check for key press...
IF BINAND(Dev_event,1)<>0 THEN
! If so, then determine which key.
OUTPUT @Hp8711;"SYST:KEY?"
ENTER @Hp8711;Keycode
END IF
END IF
|
! Reenable the interrupt in case wrong key
! was pressed.
ENABLE INTR Isc
GOTO Norm
END

8-81

Example Programs

Front Panel Keycodes

Front Panel Keycodes

Your program can monitor the analyzer’s front panel and determine when a
key has been pressed or when the knob (RPG — rotary pulse generator) has
been turned. Key presses from an attached PC DIN keyboard can also be
captured.

When keys are pressed or when the knob is turned, the analyzer detects

this event, sets bit 0 of the Device Status Register (see Chapter 5, “Using
Status Registers”) and stores the associated information in a key queue. Your
program can use the SCPI SYSTem:KEY commands to read the contents of the
key queue.

The SCPI query SYSTem:KEY:TYPE? returns a string indicating the type of
key press event:

Return Value Meaning
NONE No key has been pressed
KEY A front panel key has been pressed
RPG The analyzer's knob has been turned
ASC A key on the ASCIl PC DIN keyboard has been pressed

The SCPI query SYSTem:KEY[:VALue]? returns a number describing the
type of key press. The meaning of the number depends on the key type
returned by the SYSTem:KEY: TYPE? query:

SYST:KEY:TYPE SYST:KEY: VALUE Meaning
NONE No meaning. Returns -1.
KEY A number from 0 to 56 representing the “key code” of the front

panel key. See following table for list.

RPG The number of knob “ticks”. Positive values indicate a clock-wise
turn; negative numbers indicate counter-clockwise. Larger numbers
indicate the knob has been turned faster or further.

ASC The ASCII value of the pressed key.

9-2

Front Panel Keycodes

The SYSTem:KEY[:VALue]? query removes the key from the key queue,
so that you can read the next key. For this reason, you must perform the
SYSTem:KEY:TYPE? query before performing the SYSTem:KEY[:VALue] 7.

The queue that stores the key press events has a finite length. In firmware
revision B.03.00, this length is 32. This means that after 32 key presses occur
without being read (using SYSTem:KEY[:VALue] ?), subsequent key presses
or knob ticks will be ignored.

Your program can query the queue length using the SCPI command:
SYSTem:KEY:QUEue :MAXimum?

You can clear the queue using:
SYSTem:KEY : QUEue :CLEar

You can check how many key presses or knob tick events have occurred using
SYSTem:KEY : QUEUE : COUNt?

Finally, you can turn the key queue on or off using
SYSTem:KEY:QUEUE[:STATe] <ON|OFF>

When the queue is turned off, your program must read each key before a
following key is pressed, or information will be lost. It is generally best to
leave the queue enabled.

For a complete example of how to read the front panel keys and knob, refer
to the KEYCODE example program.

9-3

Front Panel Keycodes

Key Key Label Key Key Key Label Key
Group Code Group Code
Softkeys | Softkey 1 (top keyl 0 —/ 4—) {minus/backspace) 22

Softkey 2 1 [step upl 23
Softkey 3 2 (step down 24
Softkey 4 3 Feature | (BEGIN 40
Keys

Softkey 5 4
(CHAN 1) 41

Softkey 6 5
(CHAN 2) 42

Softkey 7 6
y POWER 43

Softkey 8 [bottom key) 7
(MENT) 44

Numeric {zero) 10
Keys © (FREQ) 45
{one) 11 SWEEDP 46
(two) 12 CAL 47
[three) 13 DISPLAY 48
{four) 14 SCALE 49
(five] 15 &G) 50
@) i 16 (FORMAT) 51
[seven] 17 MARKER 52
lsight] 18 SAVE/RECALL 53
@ (ninel 19 SYSTEM/OPTIONS) 54
ENTER 20 HARD/COPY 55
(1) Idecimall 21 (PRESET) 56

9-4

10

Introduction to SCPI

Introduction to SCPI

This chapter is a guide to HP-IB control of the analyzer. Its purpose is to
provide concise information about the operation of the analyzer under HP-IB
control. The reader should already be familiar with making measurements
with the analyzer and with the general operation of HP-IB.

Standard Commands for Programmable Instruments (SCPI) is a programming
language designed specifically for controlling instruments by Hewlett-Packard
and other industry leaders. SCPI provides commands that are common from
one instrument to another. This elimination of “device specific” commands
for common functions allows programs to be used on different instruments
with very little modification.

SCPI was developed to conform to the IEEE 488.2 standard

(replacing IEEE 728-1982). The IEEE 488.2 standard defines the syntax and
data formats used to send data between devices, the structure of status
registers, and the commands used for common tasks. For more information,
refer to the IEEE standard itself. SCPI defines the commands used to control
device-specific functions, the parameters accepted by these functions, and the
values they return.

10-2

The Command Tree

The SCPI standard organizes related instrument functions by grouping them
together on a common branch of a command tree. Each branch is assigned a
mnemonic to indicate the nature of the related functions. The analyzer has
16 major SCPI branches or subsystems. See Figure 10-1 for a model of how
these subsystems are organized to manage the measurement and data flow for

the analyzer.

SySTem DISPlay > HCOPy

Aor 1
Bor2 data
c oo — *% CALCulate H FORMat }W’
Ext Xor Ml
Ext Y ori2
z 5
| I
I
: CALibration
TRIGger
External Trigger includes
ABORt ‘ MMEMmy‘
INITiate

[}

¥
- QUTPuUt = SOURce }«—{ TRACe F—‘ FORMat
Source

Figure 10-1. Measurement and Data Flow of the Analyzer

data
bus

HP-IB

10-3

Introduction to SCPI
The Command Tree

The analyzer’s major SCPI subsystems and their functions are described
below.

ABORt Aborts any sweep in progress.

CALCulate Configures post-measurement processing of the measured
data (such as marker and limit testing functions).

CALibration Controls zeroing the broadband diode detectors.

DISPlay Controls the display of measurement data, annotation and
user graphics.

FORMat Controls the format of data transfers over the HP-IB.

(For more information about HP-IB data transfer refer to
Chapter 4, “Data Types and Encoding.”)

HCOPy Controls hardcopy (printer and plotter) output.
INITiate Controls the triggering of sweeps.
MMEMory Controls mass storage of instrument states and data (disk

and internal memory interface functions).

0UTPut Turns on/off the source output power (power to the device
under test).

PROGram Interfaces IBASIC programs and commands with an
external controller. (For more information on IBASIC
programming refer to HP Instrument BASIC User’s
Handbook.)

SENSe Configures parameters (such as the frequency and
measurement parameters) related to the sweep and
the measured signal (from the device under test). This
subsystem also controls the narrowband calibration
routines.

S0URce Controls the RF output power level of the source (power to
the device under test).

10-4

Introduction to SCPI
The Command Tree

STATus Contains the commands for using the SCPI status registers.
(For more information about using the status registers refer
to Chapter 5, “Using Status Registers.”)

SYSTem Contains miscellaneous system configuration commands
(such as I/O port, clock and softkey control).

TRACe Interfaces with the internal data arrays (functions such as
data transfer and trace memory).

TRIGger Controls the source of the sweep triggering.

When many functions are grouped together on a particular branch, additional
branching is used to organize these functions into groups that are even more
closely related. The branching process continues until each analyzer function
is assigned to its own branch. For example, the function that turns on and
off the marker tracking feature is assigned to the TRACKING branch of the
FUNCTION branch of the MARKER branch of the CALCULATE subsystem. The
command looks like this:

CALCULATE :MARKER :FUNCTION:TRACKING ON

NOTE

Colons are used to indicate branching points on the command tree. A parameter is separated from the
rest of the command by a space.

10-5

Introduction to SCPI
The Command Tree

CALCulate

MARKer

[STATe] MODE FUNCtion MAX1mum

BWIDth TRACKing RESult

COMMAND TREE
PARAMETERS

—
ON OFF ABSolute RELative ON OFF

Figure 10-2. Partial Diagram of the CALCulate Subsystem Command Tree

10-6

Sending Multiple Commands

Multiple commands can be sent within a single program message by
separating the commands with semicolons. For example, the following
program message — sent within an HP BASIC 0UTPUT statement — turns on
the marker reference and moves the main marker to the highest peak on the
trace:

OUTPUT 716;"CALCULATE :MARKER :MODE
RELATIVE; : CALCULATE :MARKER : MAXIMUM"

One of the analyzer’s command parser main functions is to keep track of a

program message’s position in the command tree. This allows the previous
program message to be simplified. Taking advantage of this parser function,
the simpler equivalent program message is:

OUTPUT 716;"CALCULATE :MARKER:MODE RELATIVE;MAXIMUM"

In the first version of the program message, the semicolon that separates the
two commands is followed by a colon. Whenever this occurs, the command
parser is reset to the base of the command tree. As a result, the next
command is only valid if it includes the entire mnemonic path from the base
of the tree.

In the second version of the program message, the semicolon that separates
the two commands is not followed by a colon. Whenever this occurs, the
command parser assumes that the mnemonics of the second command arise
from the same branch of the tree as the final mnemonic of the preceding
command. MODE, the final mnemonic of the first command, arises from the
MARKER branch. So MAXIMUM, the first mnemonic of the second command is
also assumed to arise from the MARKER branch.

The following is a longer series of commands — again sent within HP BASIC
OUTPUT statements — that can be combined into a single program message:

OUTPUT 716;"CALCULATE :MARKER:STATE ON"

OUTPUT 716;"CALCULATE :MARKER:MODE RELATIVE"

OUTPUT 716;"CALCULATE :MARKER :MAXIMUM"

OUTPUT 716;"CALCULATE :MARKER :FUNCTION:TRACKING ON"

The single program message is:

OUTPUT 716;"CALCULATE :MARKER:STATE ON;MODE
RELATIVE; MAXIMUM;FUNCTION:TRACKING ON"

10-7

Command Abbreviation

Each command mnemonic has a long form and a short form. The short forms
of the mnemonics allow you to send abbreviated commands. Only the exact
short form or the exact long form is accepted.

The short form mnemonics are created according to the following rules:

e If the long form mnemonic has four characters or less, the short form is the
same as the long form. For example, DATA remains DATA.

e If the long form mnemonic has more than four characters and the fourth
character is a consonant, the short form consists of the first four characters
of the long form. For example, CALCULATE becomes CALC.

e If the long form mnemonic has more than four characters and the fourth
character is a vowel, the short form consists of the first three characters of
the long form. For example, LIMIT becomes LIM.

NOTE

The short form of a particular mnemonic is indicated by the use of UPPER-CASE characters in this
manual.

SCPI is not case sensitive so any mix of upper- and lower-case lettering can be used when sending
commands to the analyzer.

If the rules listed in this section are applied to the last program message in
the preceding section, the statement:

OUTPUT 716;"CALCULATE :MARKER:STATE ON;MODE
RELATIVE; MAXIMUM;FUNCTION:TRACKING ON"

becomes:

OUTPUT 716;"CALC:MARK:STAT ON;MODE REL;MAX;FUNC:TRAC ON"

10-8

Implied Mnemonics

Some mnemonics can be omitted from HP-IB commands without changing

the effect of the command. These special mnemonics are called implied
mnemonics, and they are used in many subsystems. In addition to entire
mnemonics, variable parts of some mnemonics may also be implied. These
are usually a number indicating a particular measurement channel, marker, or
similar choice.

NOTE

When a number is not supplied for an implied variable, a default choice is assumed; this choice is
always 1.

The INITIATE subsystem contains both the implied mnemonic IMMEDIATE
at its first branching point and an implied variable for the measurement
channel. The command to trigger a new sweep is shown in the “SCPI
Command Summary” as:

QUTPUT 716;"INITiate[1]|2][:IMMediate]

Any of the following forms of the command can be sent to the analyzer (using
HP BASIC) to trigger a new sweep on channel 1:

OUTPUT 716;"INITIATE1:IMMEDIATE"
OUTPUT 716;"INITIATE:IMMEDIATE"
OUTPUT 716;"INITIATEL"

OUTPUT 716;"INITIATE"

If the sweep is to be triggered for measurement channel 2, the channel
number must be specified:

OUTPUT 716;"INITIATE2:IMMEDIATE"
OUTPUT 716;"INITIATE2"

10-9

Parameter Types

Parameters are used in many commands. The analyzer uses several types of
parameters with different types of commands and queries. When a parameter
is sent with a SCPI command it must be separated from the command by a
space. If more than one parameter is sent they are separated from each other
by commas.

Numeric Parameters

Most subsystems use numeric parameters to specify physical quantities.
Simple numeric parameters accept all commonly used decimal representations
of numbers, including optional signs, decimal points, and scientific notation.
If an instrument setting programmed with a numeric parameter can only
assume a finite number of values, the instrument automatically rounds the
parameter. In addition to numeric values, all numeric parameters accept
MAXimum and MINimum as values (note that MAXimum and MINimum can be
used to set or query values).

<num> is used in this document to denote a numeric parameter.

An example is the command to set the stop frequency for a measurement.
The first command below sets the stop frequency to a specific value. The
second command below sets the stop frequency to its maximum possible
value (1300 MHz for HP 8711B/12B or 3000 MHz for HP 8713B/14B).

OUTPUT 716;"SENSE1:FREQUENCY:STOP 1300 MHZ"

OUTPUT 716;"SENSE1:FREQUENCY:STOP MAX"

10-10

Query Response

Introduction to SCPI
Parameter Types

When a numeric parameter is queried the number is returned in one of the
three numeric formats.

NR1 Integers (such as +1, 0, -1, 123, -12345)

NR2 Floating point number with an explicit decimal point (such as
12.3, +1.234, -0.12345)

NR3 Floating point number in scientific notation (such as
+1.23E+5, +123.4E-3, -456.789E+6)

An example is the response to a query of the stop frequency after executing
the above commands (this response is of the NR3 type).

OUTPUT 716;"SENSE1:FREQUENCY:STOP?"

returns the value 1.3E+9.

Query Response

Character Parameters

Character parameters (sometimes referred to as discrete parameters) consist
of ASCII characters. They are typically used for program settings that have a
finite number of values.

These parameters use mnemonics to represent each valid setting. They have
a long and a short form which follow the same rules as command mnemonics.

<char> is used in this document to denote a character parameter.

An example of a command using a character parameter is the command that
selects the format in which the measurement data is displayed:

OUTPUT 716;"CALCULATE1:FORMAT MLOGARITHMIC"

When a character parameter is queried the response is always the short form
of the mnemonic that represents the current setting. An example is the
response to a query of the data format after executing the above command.

OUTPUT 716;"CALCULATE1:FORMAT?"
returns the value MLOG.

10-11

Introduction to SCPI
Parameter Types

Query Response

Boolean Parameters

Boolean parameters are used for program settings that can be represented by
a single binary condition. Commands that use this type of parameter accept
the values ON (or 1) and OFF (or 0).

<ON|OFF> is used in this document to denote a boolean parameter.

An example of a command that uses a boolean parameter is the command
that makes the analyzer continuously trigger (or stop triggering)
measurements.

OUTPUT 716;"INITIATE:CONTINUGUS ON"

A special group of commands uses boolean parameters to control automatic
functions of the instrument, such as automatically selecting the fastest
possible sweep speed. With these automatic functions an additional value is
available for the parameter. This value ONCE causes the function to execute
once before turning off.

The response when a boolean parameter is queried is a single NR1 number
indicating the state 1 for on or O for off. An example is the response to a
query on the sweep trigger status after executing the above command.

OUTPUT 716;"INITIATE:CONTINUQUS?"

returns the value 1.

10-12

Introduction ta SCPI
Parameter Types

Query Response

String Parameters

String parameters can contain virtually any set of ASCII characters. The
string must begin with a single quote (*) or a double quote (") and end
with the same character (called the delimiter). The delimiter can be included
as a character (embedded) inside the string by typing it twice without any
characters in between. For example:

QUTPUT 716;"DISP:ANN:TITL:DATA ’DUT’’S PHASE’"
<string> is used in this document to denote a string parameter.

A example of a command that uses a string parameter is the CONFIGURE
command:

OUTPUT 716;"CONFIGURE °’FILTER:TRANSMISSION’"

Some of the string parameters used by the analyzer, like
FILTER:TRANSMISSION’ in the example above, follow the same rules that
apply to mnemonics. They may have branching (’ FILTER :REFLECTION’ is a
related command) and abbreviated versions.

The response when a string parameter is queried is a string. The only
difference is that the response string will only use double quotes as
delimiters. Embedded double quotes may be present in string response data.
When the string follows the “SCPI” mnemonic rules, the string returned in
response to a query is in the abbreviated form. An example is the response
to the configuration status of the analyzer (affer executing the last command).

QUTPUT 716;"CONFIGURE?"
returns the value "FILT:TRAN".

10-13

Introduction to SCPI
Parameter Types

Block Parameters

Block parameters are typically used to transfer large quantities of related data
(like a data trace). Blocks can be sent as definite length blocks or indefinite
length blocks — the instrument will accept either form. For more information
on block data transfers refer to Chapter 4, “Data Types and Encoding.”

<block> is used in this document to denote a block parameter.

10-14

Syntax Summary

The following conventions are used throughout this manual whenever SCPI
mnemonics are being described.

angle brackets (< >) are used to enclose required parameters within a
command or query. The definition of the variable is
usually explained in the accompanying text.

square brackets ([]) are used to enclose implied or optional parameters
within a command or query.

UPPERIlower case are used to indicate the short form (upper-case) of a
given mnemonic. The remaining (lower-case) letters
are the rest of the long form mnemonic.

)

KEYWORD ‘ space(s) ——= parameter \F suffix Tl - EOL

@)

Figure 10-3. SCPI Command Syntax

10-15

Introduction to SCPI
Syntax Summary

The following elements have special meanings within a SCPI program
message (or combination or mnemonics).

colon (%) When a command or query contains a series of
mnemonics, they are separated by colons. A colon
immediately following a mnemonic tells the command
parser that the program message is proceeding to the
next level of the command tree. A colon immediately
following a semicolon tells the command parser that
the program message is returning to the base of the
command tree.

semicolon (;) When a program message contains more than one
command or query, a semicolon is used to separate them
from each other,

comma (,) A comma separates the data sent with a command or
returned with a response.

space () One space is required to separate a command or query
from its data (or parameters). Spaces are not allowed
inside a command or query.

10-16

IEEE 488.2 Common Commands

IEEE 488.2 defines a set of common commands. All instruments are required
to implement a subset of these commands, specifically those commands
related to status reporting, synchronization and internal operations. The rest
of the common commands are optional. The following list details which of
these IEEE 488.2 common commands are implemented in the analyzer and
the response of the analyzer when the command is received.

*CLS

*ESE <num>

*ESE?

*ESR?

*IDN?

Clears the instrument Status Byte by emptying the error
queue and clearing all event registers, also cancels any
preceding *0PC command or query (does not change the
enable registers or transition filters).

Sets bits in the Standard Event Status Enable Register —
current setting is saved in non-volatile memory.

Reads the current state of the Standard Event Status Enable
Register.

Reads and clears the current state of the Standard Event
Status Register.

Returns a string that uniquely identifies the analyzer. The
string is of the form

"HEWLETT-PACKARD,8711B,<serial number>,<software revision>"

*LRN?

*0PC

This returns a string of device specific characters that, when
sent back to the analyzer will restore the instrument state
active when *LRN? was sent. Data formatting (ENTER USING
"-K" in HP BASIC) or a similar technique should be used to
ensure that the transfer does not terminate on a carriage
return or line feed (both €k and Yy are present in the learn
string as part of the data).

Operation complete command. The analyzer will generate
the OPC message in the Standard Event Status Register
when all pending overlapped operations have been
completed (e.g. a sweep, or a preset). For more information
about overlapped operations refer to “Overlapped
Commands” in Chapter 2.

10-17

Introduction to SCPI

IEEE 488.2 Common Commands

*0PC?

*0PT?

*PCB <num>

*PSC <num>

*RST

*SRE <num>

*SRE?

Operation complete query. The analyzer will return an
ASCII “1” when all pending overlapped operations have
been completed.

Returns a string identifying the analyzer’s option
configuration. The string is of the form "1E1,1C2". The
options are identified by the following:

1EC 75 ohm

1E1 60 dB step attenuator
1C2 IBASIC

1DA AM delay (50 Q]

0B AM delay (75 Q]

Sets the pass-control-back address (the address of the
controller before a pass control is executed).

Sets the state of the Power-on Status Clear flag — flag is
saved in non-volatile memory. This flag determines whether
or not the Service Request enable register and the Event
Status enable register are cleared at power-up.

Executes a device reset and cancels any pending *0PC
command or query. The contents of the instrument’s
nonvolatile memory are not affected by this command.

This command is different from the front panel (PRESET)
function in the state of the commands (and their reset
states) listed below.

The preset instrument state is described in the User’s Guide.

INITiate:CONTinuous = OFF
OUTPut[:STATe] = OFF
CALibration:ZERO:AUTO = OFF
SENSe:CORRection[:STATe] = OFF

SENSe:SWEep:POINts = MAX
SOURce:POWer MIN

Sets bits in the Service Request Enable Register. Current
setting is saved in non-volatile memory.

Reads the current state of the Service Request Enable
Register.

10-18

*STB?

*TST?

*WAT

*TRG

Introduction to SCPI

Reads the value of the instrument Status Byte. This is a
non-destructive read, the Status Byte is cleared by the *CLS
command.

Returns the result of a complete self-test. An ASCII 0
indicates no failures found. Any other character indicates a
specific self-test failure. Does not perform any self-tests. See
the Service Guide for further information.

Prohibits the instrument from executing any new commands
until all pending overlapped commands have been
completed.

Triggers a sweep on the active channel when in Trigger Hold
mode. Ignored if in continuous sweep.

10-19

Introduction to SCPI

11

Menu Map with SCPI
Commands

Menu Map with SCPI Commands

This chapter contains a map of all the softkey menu choices in the analyzer.
There is a table for each major hardkey on the analyzer’s front panel. The
softkeys are shown with corresponding SCPI commands (if one exists).
Hardkeys are indicated with the notation, softkeys are shown as

Softkeys . SCPI commands are all shown in their short form.

Some commands (such as source settings) have mnemonics that specify

the channel in use. These mnemonics are shown as SENS[1]2]: . .
indicating that either channel could be used. The actual mnemonic entered
would be SENS1: ... for setting channel 1 or SENS2: ... for channel

2. Mnemonics for keys that toggle between two states are shown as ...

ON | OFF.

<num> and <string> refer to parameter types described in the “Parameter
Types” section. <string> parameters are typically enclosed in single quotes
(’the string data’).

(PRESET) SCPI Command

KEYSTROKES SCPI COMMAND

(PRESET)

SYST:PRES; *WAI

11-2

SCPI Commands

Menu Map with SCPI Commands

KEYSTROKES

SCPI COMMAND

implifier
Transmissn
Reflection

Power

Filter
Transmissn

Reflection

Broadband Passive
Transmissn

Reflection

Mixer
Conversion Loss
Reflection

AM Delay !

CONF
CONF
CONF

CONF
CONF

CONF
CONF

CONF
CONF
CONF

’AMPL: TRAN’ ; *WAT
’AMPL:REFL’ ; *WATI

’AMPL:POW’ ; *WAI

FILT:TRAN’ ; *WATI

FILT:REFL’ ; *WATI

’BBAN: TRAN’ ; *WAT

’BBAN:REFL’ ; *WATI

’MIX:CLOS’ ;*WAI
MIX:REFL’;*WAI

’MIX:GDEL’;*WAI

1 Options 1DA and 1DB only

11-3

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Cable !

Transmissn

Reflection

Fault Location
Start Distance
Stop Distance
Feet
Meters
Low Pass
Band Pass

Center Frequency

Units

SRL

Start Freq

Units

Stop Freq

Units

Connector Model
Measure Connector

Connector Length

Number) (ENTER)
Connector ¢ (Number) (ENTER)

CONF[1|2] ’CABL:TRAN’;*WAI
CONF[1|2] ’CABL:REFL’;*WAI
CONF[1|2] ’CABL:FAULT’;*WAI

SENS[1|2]:DIST:STAR <num> [FEET|MET];*WAI
SENS[1|2]:DIST:STOP <num> [FEET|MET];*WAI
SENS:DIST:UNIT FEET
SENS:DIST:UNIT MET
SENS : FREQ: MODE LOWP; *WAI
SENS :FREQ:MODE CENT;*WAI
DISP:ANN:FREQ[1]2] :MODE CSPAN

SENS[1|2] :FREQ:CENT <num> [MHZ|KHZ|HZ];
*WAL

CONF[1]2] ’CABL:SRL’;*WAI
DISP:ANN:FREQ[1]|2] :MODE SSTQP

SENS[1|2] :FREQ:STAR <num> [MHZ|KHZ|HZ];
*WAL

DISP:ANN:FREQ[1/2] :MODE SSTOP

SENS[1|2] :FREQ:STOP <num> [MHZ|KHZ|HZ];
*WAL

SENS[1]2] : CORR:MODEL: CONN

SENS[1]2] :CORR:LENG:CONN <num>
SENS[1[2] :CORR:CAP:CONN <num>

1 Option 100 only

11-4

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Z Cutoff Frequency

Number) (ENTER)

Auto Z ON off

Manual Z (Number) (ENTER)

SRL Cable Scan

Humber of Points (Number) (ENTER)

User BEGIN

SENS:FREQ:ZST <num> [MHZ|KHZ|HZ]
SENS[1]2] : FUNC:SRL:MODE <AUTO|MANUAL>
SENS[1]2] : FUNC:SRL:IMP <num>
SENS[1]2] : FUNC:SRL:SCAN; *WAIL

SENS[1]2] :SWE:POIN <num>;*WAI

No SCPI command

11-5

Menu Map with

SCPI Commands

(CHAN 1) | (CHAN 2) SCPI Commands

KEYSTROKES

SCPI COMMAND

(CHAN 1) | (CHAN 2)

Transmissn
Reflection
Fault Location!
SrL!

More

Power

Conversion Loss

AM Delay ?

Detection Options
Narrowband Internal
A
B
R
L/R

B/R

SENS[1]2]:FUNC
DET NBAN;#*WAI

SENS[1]2]:FUNC
DET NBAN;#*WAI

SENS[1]2]:FUNC
DET NBAN;#*WAI

SENS[1]2]:FUNC
DET NBAN;#*WAI

SENS[1]2]:FUNC

SENS[1]2]:FUNC
DET BBAN;#*WAI

SENS[1]2]:FUNC
DET BBAN;#*WAI

SENS[1]2]:FUNC
SENS[1]2]:FUNC
SENS[1]2]:FUNC

SENS[1]2]:FUNC
DET NBAN;#*WAI

SENS[1]2]:FUNC
DET NBAN;#*WAI

SENS[1]2]:STAT ON;+*WAI

’XFR:POW:RAT 2,0;

XFR:POW:RAT 1,0°;

'FLOC 1,07;

’SRL 1,07;

XFR:POW 2’ ;DET BBAN;*WAI

’XFR:POW:RAT 2,0;

XFR:GDEL:RAT 12,11°;

XFR:POW 1’ ;DET NBAN;*WAI
XFR:POW 2’ ;DET NBAN;*WAI
XFR:POW O’ ;DET NBAN;*WAI

XFR:POW:RAT 1,0°;

’XFR:POW:RAT 2,0;

1 Option 100 only
2 Options 1DA and 1DB only

11-6

Menu Map with SCPI Commands

(CHAN 1) | (CHAN 2) SCPI Commands

KEYSTROKES SCPI COMMAND

Broadband Internal

B* SENS[1]2] :FUNC ’XFR:POW 2’ ;DET BBAN;*WAI
R* SENS[1]2] :FUNC ’XFR:POW 0’ ;DET BBAN;*WAI
B*/R* SENS[1|2] :FUNC ’XFR:POW:RAT 2,0’;

DET BBAN;*WAI

Broadband External

X SENS[1]2] :FUNC ’XFR:POW 11’;DET BBAN;*WAI
Y SENS[1]2] :FUNC ’XFR:POW 12’ ;DET BBAN;*WAI
X/Y SENS[1]2] :FUNC ’XFR:POW:RAT 11,12’;
DET BBAN;*WAI
Y/X SENS[1]2] :FUNC ’XFR:POW:RAT 12,11°;
DET BBAN;*WAI
Y/R* SENS[1|2] :FUNC ’XFR:POW:RAT 12,0’;
DET BBAN;*WAI
AUX Input SENS[1]2] :FUNC ’XFR:VOLT’;*WAI
Chan OFF SENS[1]2]:STAT OFF;+*WAI

11-7

Menu Map with SCPI Commands

SCPI Commands

KEYSTROKES SCPI COMMAND
(FREQ)
Start DISP:ANN:FREQ[1|2] :MODE SSTOP
Number) Units SENS[1]2] :FREQ:STAR <num> [MHZ|KHZ|HZ];
*WAI
Stop DISP:ANN:FREQ[1|2] :MODE SSTOP
Number) Units SENS[1]2] :FREQ:STOP <num> [MHZ|KHZ|HZ];
*WAI
Center DISP:ANN:FREQ[1]2] :MODE CSPAN
Number) Units SENS[1]2] :FREQ:CENT <num> [MHZ|KHZ|HZ];
*WAI
Span DISP:ANN:FREQ[1]2] :MODE CSPAN
Number) Units SENS[1]2] :FREQ:SPAN <num> [MHZ|KHZ|HZ];
*WAI
Cil DISP:ANN:FREQ[1]2]:MODE CW;
:SENS[1]2] :FREQ:SPAN O;+WAI
Number) Units SENS[1]2] :FREQ:CENT <num> [MHZ|KHZ|HZ];
*WAI
Fault Loc Frequency 1
Low Pass SENS:FREQ:MODE LOWP;*WATI
Band Pass SENS:FREQ:MODE CENT;*WATI

Band Pass Max Span (Number) Units

SENS[1]2] : FREQ:SPAN:MAX <num>
[MHZ | KHZ | HZ]

1 Option 100 only

11-8

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Disp Freq Resolution
MHz
kHz

Hz

DISP:ANN:FREQ:RES MHZ
DISP:ANN:FREQ:RES KHZ
DISP:ANN:FREQ:RES HZ

11-9

Menu Map with SCPI Commands

SCPI Commands

KEYSTROKES SCPI COMMAND
(POWER)
Level (Number) (ENTER) SOUR[1[2] :POW <num> [dBm];*WAI
RF ON off OUTP <ON|OFF>;*WAI
Start Power (Number) (ENTER) SOUR:POW:STAR <num> [dBm];*WAI
Stop Power (Number) (ENTER) SOUR:POW:STOP <num> [dBm] ;*WAI

Pur Sweep Range 1

~13 to Max (dBm) SOUR:POW:RANG ATTO;*WAI
=28 to -8 (dBm) SOUR:POW:RANG ATT10;*WAI
~33 to 18 (dBm) SOUR:POW:RANG ATT20;*WAI
43 to 28 (dBm) SOUR:POW:RANG ATT30;*WAI
-53 to 38 (dBm) SOUR:POW:RANG ATT40;*WAI
~60 to 48 (dBm) SOUR:POW:RANG ATT50;*WAI
~60 to 58 (dBm) SOUR:POW:RANG ATT60;*WAI

1 The numbers shown on the range keys will depend on the options installed in the analyzer. Also, if the step attenuator option is not installed, these keys will not
appear.

11-10

Menu Map with SCPI Commands

SCPI Commands

KEYSTROKES SCPI COMMAND
SWEEP
Sweep Time (Number) (ENTER) SENS[1]2] : SWE:TIME <num>
[as|fs|psins|usims|s]!;*WAI
Sweep Time AUTO man SENS[1]2] :SWE:TIME: AUTO <ON|OFF>;*WAI
Alt Sweep on OFF SENS:COUP <NONE|ALL>;*WAI
Frequency Sweep POW:MODE:FIX;*WAT
Power Sweep POW:MODE: SWE; *WAT

1 If using the microsecond suffix {"us”), the letter “u” must be used. Do not use the Greek character "g."

11-11

Menu Map with SCPI Commands

SCPI Commands

KEYSTROKES

SCPI COMMAND

(END)

Trigger
Continuous
Hold
Single
Trigger Source

Internal
External Sweep

External Point

Number of Points (Number) (ENTER)

Distance!

Start Distance (Number) (ENTER)
Stop Distance (Number) (ENTER)

Feet

Meters

SRL Cable Scan!

Ext Ref on OFF

ABOR; :INIT[1/2]:CONT ON;+*WAI

ABOR; :INIT[1/2]:CONT OFF;+*WAI

ABOR; :INIT[1/2]:CONT OFF;:INIT[1]2];*WAI

TRIG:SOUR IMM;:SENS:SWE:TRIG:SOUR

IMM; *WAT

TRIG:SOUR
IMM; *WAT

TRIG:SOUR
EXT; *WAI

SENS[1]2]

SENS[1]2]:
SENS[1]2]:
SENS:DIST:

SENS:DIST:

SENS[1]2]

SENS:ROSC:

EXT;:

EXT;:

DIST:
DIST:

UNIT
UNIT

:FUNC:

SOUR

SENS:SWE:TRIG:SOUR

SENS:SWE:TRIG:SOUR

:SWE:POIN <num>;*WAI

STAR <num> [FEET|MET] ;+*WAI
STOP <num> [FEET|MET] ;+*WAI
FEET
MET

SRL:SCAN; *WAI

<EXT|INT>;*WAI

1 Option 100 only

11-12

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Spur Avoid Options
None
Dither

Spur Avoid

DIAG:SPUR:METH NONE;*WAI
DIAG:SPUR:METH DITH;*WAI

DIAG:SPUR:METH AVO;+*WAI

11-13

Menu Map with SCPI Commands

SCPI Commands

KEYSTROKES SCPI COMMAND
SCALE
Autoscale DISP:WIND[1]2]:TRAC:Y:AUTO ONCE
Scale/Div Number) ENTER) DISP:WIND[1]2]:TRAC:Y:PDIV <num>
Reference Level (Number)(ENTER) DISP:WIND[1|2]:TRAC:Y:RLEV <num>
Reference Position (Number) (ENTER) DISP:WIND[1|2]:TRAC:Y:RPOS <num>
€5 Phase 0Offset (Number)(ENTER) SENS[1]2] : CORR:0FFS:PHAS <num> [DEG]
£ Electrical Delay (Number) (ENTER) SENS[1]2]:CORR:EDEL:TIME <num>

I:aslfslpslnsluslmsls:l1

1 If using the microsecond unit terminator, the letter “u” must be used. Do not use the Greek character ".”

11-14 &5 indicates HP 8712B/14B only

SCPI Commands

Menu Map with SCPI Commands

KEYSTROKES SCPI COMMAND
MARKER
1: or 1> CALC[1]2] :MARK1 ON
(Number) Units CALC[12] :MARK1:X <num> [MHZ|KHZ|HZ]
2: or 2> CALC[1]2] :MARK2 ON
(Number) Units CALC[12] :MARK2:X <num> [MHZ|KHZ|HZ]
3: or 3> CALC[1]2] :MARK3 ON
(Number) Units CALC[12] :MARK3:X <num> [MHZ|KHZ|HZ]
4: or 4> CALC[1]2] :MARK4 ON
(Number) Units CALC[12] :MARK4:X <num> [MHZ|KHZ|HZ]
More Markers
5: or 5> CALC[1]2] :MARKS ON
Units CALC[1]2] :MARK5:X <num> [MHZ|KHZ|HZ]
6: or 6> CALC[1]2] :MARK6 ON
Units CALC[1]2] :MARK6:X <num> [MHZ|KHZ|HZ]
700 7> CALC[1]2] :MARK7 ON
Units CALC[1]2] :MARK7:X <num> [MHZ|KHZ|HZ]
8: or 8> CALC[1]2] :MARKS ON
Units CALC[1]2] :MARK8:X <num> [MHZ|KHZ|HZ]
Active Marker Off CALC[1|2]:MARK[1]2]---8] OFF

11-15

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES SCPI COMMAND

A1l Off CALC[1]2] :MARK: AOFF

Marker Functions

Delta Mkr on OFF CALC[1]2] :MARK :MODE <REL|ABS>

Marker —> Center SENS[1]2] :FREQ:CENT
(CALC[112]1:MARK[1]2] ... 8]1:X:ABS?);*WAI

Marker —> Reference DISP:WIND[1]2]:TRAC:Y:RLEV
(CALC[112]:MARK[1]2] ... 8]:Y?);*WAI

6% Marker —> Elec Delay SENS[1]2] : CORR:EDEL: TIME
(CALC[1/2]1:MARK[1l2] ... 8]:GDEL?);+*WAI

Marker Math

Statistics CALC[1[2] :MARK:FUNC STAT
Flatness CALC[1[2] :MARK:FUNC FLAT
RF Filter Stats CALC[1[2] :MARK:FUNC FST
Math Off CALC[1[2] :MARK:FUNC OFF

Marker Search

Max Search CALC[12] :MARK:FUNC MAX
MEr —> Max CALC[1]2] :MARK:FUNC MAX
Next Peak Left CALC[1]2] :MARK: MAX : LEFT
Next Peak Right CALC[1]2] : MARK: MAX : RIGH

Min Search CALC[1]2] :MARK:FUNC MIN
Marker —> Min CALC[1]2] :MARK:FUNC MIN
Next Min Left CALC[1]2] :MARK: MIN:LEFT
Next Min Right CALC[1]2] : MARK: MIN:RIGH

11-16 &> indicates HP 8712B/14B only

SCPI Commands (continued) (continued)

Menu Map with SCPI Commands

KEYSTROKES

SCPI COMMAND

Target Search

Target Value (Number) (ENTER)

Search left (Number) (ENTER)

Search right (Number) (ENTER)

Bandwidth

Number) (ENTER)

Notch

Number) (ENTER)

More

Multi Peak
MultiNotch
Search 0ff

Tracking on OFF

CALC[1]2]:
CALC[1]2]:

[DB]

CALC[1]2]
CALC[1]2]
CALC[1]2]
CALC[1]2]
CALC[1]2]
CALC[1]2]

CALC[1]2]
CALC[1]2]
CALC[1]2]
CALC[1]2]

MARK:
MARK:

:MARK:
:MARK:
:MARK:
:MARK:
:MARK:
:MARK:

:MARK:

:MARK:

:MARK:
:MARK:

FUNC
TARG

TARG
TARG
FUNC
BWID
FUNC
NOTC

FUNC

FUNC

FUNC
FUNC

:TRAC <ON|OFF>

TARG

<LEFT|RIGH>,<num>

LEFT,<num> [DB]
RIGH,<num> [DB]
BWID

<num> [DR]

NOTC

<num> [DR]

MPE
MNOT
OFF

11-17

Menu Map with SCPI Commands

(DISPLAY) SCPI Commands

KEYSTROKES

SCPI COMMAND

Normalize

Data->Mem

Data

Memory
Data/Men

Data and Memory

Limit Menu
Add Limit

Add Max Line
Add Min Line
Add Max Point
Add Min Point

Delete Limit

Delete All Limits

CALC[1]2]
STAT ON

CALC[1]2]
STAT ON

CALC[1]2]
STAT ON

CALC[1]2]
STAT ON

CALC[1]2]
CALC[1]2]

:LIM:

:LIM:

:LIM:

:LIM:

:LIM:
:LIM:

CALC[1]2] :MATH (IMPL);
:DISP:WIND[1]2]:TRAC1 ON;TRAC2 OFF

CALC[1]2] :MATH (IMPL);
:DISP:WIND[1]2]:TRAC1 ON;TRAC2 ON

CALC[1]2]:LIM:DISP ON

SEGM[1]2] .-

SEGM[1]2] .-

SEGM[1]2] .-

SEGM[1]2] .-

SEGM[1]2] .-

SEGM: AOFF

12]

12]

12]

12]

12]

TRAC CH[1|2]SMEM,CH[1|2]SDATA;
:CALC[112] :MATH (IMPL/CH[1|2]SMEM);
:DISP:WIND[1]2]:TRAC1 ON;TRAC2 OFF

TRAC CH[1|2]SMEM,CH[1|2]SDATA

DISP:WIND[1]2]:TRAC1 OFF;TRAC2 ON

CALC[1]2] :MATH (IMPL/CH[1|2]SMEM);
:DISP:WIND[1]2]:TRAC1 ON;TRAC2 OFF

:TYPE LMAX;

:TYPE LMIN;

:TYPE PMAX;

:TYPE PMIN;

:STAT OFF

11-18

Menu Map with SCPI Commands

DISPLAY) SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Edit Limit

Begin Frequency (Number) (ENTER)

End Frequency (Number) (ENTER)

Begin Limit (Number) (ENTER)

End Limit (Number) (ENTER)

Marker
Limit Line ON off

Mkr Limits

Max Limit (Number) (ENTER)
Min Limit (Number) (ENTER)

Mkr Limit ON off

Limit Test on OFF

More Display

Split Display FULL Split

Title and Clock
Enter Line 1
Enter Line 2
Show Clock on Line 1
Show Clock on Line 2
Clock 0Off

CALC[1]2] :LIM:SEGM[1]2]---12]:FREQ:STAR
<pum> [MHZ|KHZ|HZ]

CALC[1]2] :LIM:SEGM[1]|2]---12] :FREQ: STOP
<pum> [MHZ|KHZ|HZ]

CALC[1]2|:LIM:SEGM[1]2]---12]:AMPL:STAR
<num>

CALC[1]2]:LIM:SEGM[1]2]--12]:AMPL:STOP
<num>

CALC[1[2]:LIM:DISP <ON|OFF>

CALC[1[2] :LIM:MARK:STAT:PEAK:MAX <num>
CALC[1[2] :LIM:MARK:STAT:PEAK:MIN <num>
CALC[1[2] :LIM:MARK:STAT:<MEAN|PEAK|FLAT>

CALC[1[2]:LIM:STAT <ON|OFF>

DISP:FORM [SING|ULOW]

DISP:ANN:TITL1:DATA <string>
DISP:ANN:TITL2:DATA <string>
DISP:ANN:CLOC:MODE LINE1
DISP:ANN:CLOC:MODE LINE2

DISP:ANN:CLOC:MODE OFF

11-19

Menu Map with SCPI Commands

DISPLAY) SCPI Commands (continued)

KEYSTROKES SCPI COMMAND
Title + Clk ON off DISP:ANN:TITL <ON|OFF>
Y-Axis Lbl ON off DISP:ANN:YAX <ON|OFF>
Y-Axis Lbl rel ABS DISP:ANN:YAX:MODE <REL|ABS>
Graticule ON off DISP:WIND[1[2]:TRAC:GRAT:GRID <ON|OFF>

11-20

SCPI Commands

Menu Map with SCPI Commands

KEYSTROKES

SCPI COMMAND

(FORMAT)

Log Mag
Lin Mag
SWR

&5 Delay

&5 Phase

&5 Smith Chart

75-ohm Formats!
Mag dBuV
Mag dBmV

Mag dBV

More Format

& Polar

&5 Real

5 Imaginary

5 Impedance Magnitude

CALC[1]2]

CALC[1]2]

CALC[1]2]

CALC[1]2]

CALC[1]2]

CALC[1]2]

CALC[1]2]

CALC[1]2]

CALC[1]2]

CALC[1]2]:

CALC[1]2]:

CALC[1]2]:

CALC[1]2]:

FORM

:FORM

:FORM

:FORM

:FORM

:FORM

FORM

:FORM

FORM

:FORM

FORM

:FORM

:FORM

MLOG

MLIN

SWR

GDEL

PHAS

SHMIT

DBUV
DBMV
DBV

POL

REAL

IMAG

MIMP

1 Option 1EC (75 Q) only

&5 indicates HP 8712B/14B only

11-21

Menu Map with SCPI Commands

SCPI Commands

KEYSTROKES

SCPI COMMAND

CAL

Normalize

Transmissn

Restore Defaults

Response

Measure Standard

Response & Isolation

Measure Standard

Measure Standard

Reflection
Restore Defaults

One Port

Measure Standard
Measure Standard

Measure Standard

— loads
— Through

— Open
— Short
— load

TRAC CH[1|2]SMEM,CH[1|2]SDATA;
:CALC[1]2] :MATH (IMPL/CH[1|2]SMEM);
:DISP:WIND[1]2]:TRAC1 ON;TRAC2 OFF

SENS[1]2]:CORR:CSET DEF;*WAI

SENS[1]2]:CORR:COLL:IST OFF;METH
TRAN1; *WAI

SENS[1]2]:CORR:COLL STAN1;*WAI;
:SENS[12] :CORR:COLL: SAVE; *WAI

SENS[1]2]:CORR:COLL:IST OFF;METH
TRAN2; *WAI

SENS[1]2]:CORR:COLL STAN1;*WAI;

SENS[1]2]:CORR:COLL STAN2;*WAI;
:SENS[12] :CORR:COLL: SAVE; *WAI

SENS[1]2]:CORR:CSET DEF;*WAI

SENS[1]2]:CORR:COLL:IST OFF;METH REFL3;
*AT

SENS[1]2]:CORR:COLL STAN1;+*WAI
SENS[1]2]:CORR:COLL STAN2;*WAI

SENS[1]2]:CORR:COLL STAN3;*WAI;
:SENS[12] :CORR:COLL: SAVE; *WAI

11-22

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES SCPI COMMAND
Fault Location!
Default Cal SENS[1/2] :CORR:CSET DEF;*WAI
Full Band Cal SENS[1/2] :CORR:COLL:IST ON;METH REFL3;
*WAT
Measure Standard — Open SENS[1/2] :CORR:COLL STAN1;*WAI
Measure Standard — Short SENS[1/2] :CORR:COLL STAN2;*WAI
Measure Standard — load SENS[1/2] :CORR:COLL STAN3;#*WAI;
:SENS[1|2] :CORR: COLL:SAVE; *WAI
Velocity Factor SENS[1/2] :CORR:RVEL:COAX <num>
Cable Loss SENS[1/2] :CORR:L0SS:COAX <num>

Calibrate Cable

Specify Length SENS[1]2]:CORR:LENG:COAX <num>
[FEET|MET] ; *WAI
Measure Cable SENS[1]2] : CORR:RVEL; #WAT
Multi Peak Corr on OFF SENS[1]2] : CORR:PEAK:COAX [ON|OFF]
Multi Peak Threshold SENS[1]2] : CORR:THR:COAX <num>
SRL?
Default Cal SENS[1]2] : CORR:CSET DEF;*WAI
Full Band Cal SENS[1]2] : CORR:COLL:IST ON;METH REFL3;
*WAT
Measure Standard — Open SENS[1]2] : CORR:COLL STAN{;*WAI
Measure Standard -— Short SENS[1]2] : CORR:COLL STAN2;*WAI
Measure Standard — load SENS[1]2] : CORR:COLL STAN3;*WAI;

:SENS[12] :CORR:COLL: SAVE; *WAI

1 Option 100 only. This selection {and its lower-level menus) only appears when making fault location measurements

2 Option 100 only. This selection {and its lower-level menus) only appears when making SRL measurements

11-23

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES SCPI COMMAND

Connector Model

Measure Connector

Measure SENS[1]2] : CORR:MODEL: CONN
Connector Length SENS[1]2] :CORR:LENG:CONN <num>
Connector C SENS[1[2] :CORR:CAP:CONN <num>
Z cutoff Frequency SENS[1]2] :FREQ:ZST <num>
[GHZ |[MHZ |KHZ | HZ]
Auto Z ON off SENS[1|2] :FUNC:SRL:MODE [AUTO|MAN]
Manual Z SENS[1]2] :FUNC:SRL:IMP <num>
AM Delay!
Restore Defaults SENS[1[2]:CORR:COLL:IST OFF;METH
TRAN1 ; *WAT
Response SENS[1[2]:CORR:COLL:IST OFF;METH
TRAN1 ; *WAT
Measure Standard SENS[1]2] :CORR:COLL STAN{;*WAT;
:SENS[12] :CORR:COLL: SAVE; *WAI
Cal Kit
Default Type-N(f) SENS:CORR:COLL:CKIT ’COAX,7MM,TYPE-
N,50,FEMALE'
SENS:CORR:COLL:CKIT
»COAX,7MM, TYPE-N,75,FEMALE’ (option 1EC)
Type-N(m) SENS:CORR:COLL:CKIT ’COAX,7MM,TYPE-

N,50,MALE’
SENS:CORR: COLL: CKIT
»COAX,7MM, TYPE-N,75,MALE’ (option 1EC)

1 Options 1DA and 1DB only

11-24

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES SCPI COMMAND

User Defined SENS:CORR:COLL:CKIT
’USER, IMPLIED, IMPLIED, IMPLIED,IMPLIED’

3.5 mm SENS:CORR: COLL: CKIT
’COAX,3.5MM, APC-3.5,50, IMPLIED’

Type-F SENS:CORR: COLL: CKIT
»COAX,7MM, TYPE-F,75, IMPLIED’

Detector Zero

Autozero CAL:ZERQ:AUTO ON;*WAI
Manual Zero CAL:ZERQ:AUTO ONCE;*WAIL
& More Cal
& Velocity Factor (Number) (ENTER) SENS[1]2] : CORR:RVEL:COAX <num>
€ Smith Chart Z0 (Number) (ENTER) SENS[112]:CORR:IMP:INP:MAGN <num> [OHM]
&5 Port Ext’s on OFF SENS[1]2]:CORR:EXT [0ON|OFF]

£ Refl Port Extension (Number) (ENTER) |SENS[1]2]:CORR:EXT:REFL:TIME <num>
I:aslfslpslnsluslmsls:l2

£ Trans Port Extension (Number) (ENTER)|SENS[1]2]:CORR:EXT:TRAN:TIME <num>
I:aslfslpslnsluslmsls:l2

1 Implemented in firmware revisions B.03.01 and above.

2 If using the microsecond unit terminator, the letter “u” must he used. Do not use the Greek character “u.”

& indicates HP 8712B/14B only 11-25

Menu Map with SCPI Commands

SCPI Commands

KEYSTROKES

SCPI COMMAND

@o)

Average on OFF

Restart Average

Average Factor (Number) (ENTER)

System Bandwidth
Wide
Medium
Narrow

Fine

Fault Window !
Minimum
Medium

Maximum

5 Delay Aperture

5 Aperture (Hz) (Number) (ENTER)

€2 Aperture (%) (Number)(ENTER)

SENS[1]2]

SENS[1]2]

SENS[1]2]
SENS[1]2]
SENS[1]2]

SENS[1]2]
SENS[1]2]
SENS[1]2]

CALC[1]2]

CALC[1]2]

SENS[1]2]:

SENS[1]2]:

:AVER

:AVER:

AVER:

BWID

:BWID
:BWID
:BWID

:WIND
:WIND
:WIND

:GDAP:

:GDAP

<ON|OFF>; *WAT

CLE; *WAI

COUN <num>;*WAI

6500 HZ;*WAI
3700 HZ;*WAI
250 HZ;*WAI

15 HZ;*WAI

RECT
HAMM
KBES

SPAN <num> [HZ];*WAI

:APER <num>;*WAI

1 Option 100 only

11-26

&5 indicates HP 8712B/14B only

SCPI Commands

Menu Map with SCPI Commands

KEYSTROKES

SCPI COMMAND

SAVE RECALL

Save State

Re-Save State

Define Save
Inst State ON off
Cal on OFF
Data on OFF
Save ASCIT
Save Chan 1

Save Chan 2

Recall State

MMEM

MMEM :

MMEM :

MMEM :
MMEM :
MMEM :

MMEM :
MMEM :

:LOAD:

STOR:

STOR:

STOR:
STOR:
STOR:

STOR:
STOR:

STAT

STAT

STAT:
STAT:
STAT:

TRAC
TRAC

STAT

1,<file>!

1,<file>!

IST <ON|OFF>
CORR <ON|QOFF>

TRAC <ON|OFF>

CH1FDATA,<file>!

CH2FDATA,<file>!

1,<file>!

1 <file> may include the mass storage device mnemonic MEM:, INT:, EXT:, or RAM: before the actual name of the file. If the mass storage device is not
explicitly named the currently selected device is assumed. < file>, <file1> and <file2> are <string> parameters. <string>> parameters appear between

single quotes.

11-27

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Programs

Save Program
Re-Save Program
File Type bin ASCII
Recall Program
Save AUTOST

1BASIC!

Select Disk

Non-Vol RAM Disk
Volatile RAM Disk
Internal 3.5" Disk
External Disk
Configure VOL RAHN
Restore Defaults
Modify Size
Current Size

Configure Ext Disk

Ext Disk Address (Number) (ENTER)
Ext Disk Unit (Number) (ENTER)
Ext Disk Volume (Number) (ENTER)

MMEM:MSIS °MEM:’
MMEM:MSIS °RAM:’
MMEM:MSIS °INT:’

MMEM:MSIS ’EXT:’?

No SCPI command
No SCPI command
No SCPI command

SYST:COMM:GPIB:MMEM: ADDR <num>
SYST:COMM:GPIB:MMEM:UNIT <num>

SYST:COMM:GPIB:MMEM: VOL <num>

1 The IBASIC menu is described under the SYSTEM OPTIONS key.

2 Active controller status must be passed to the instrument (from IBASIC or the external controller) for external disk access.

11-28

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

File Utilities

Rename File

Delete File

Delete All Files

Copy File
Copy to lonVol RAN
Copy to Vol RAM
Copy to 3.5" Int Disk
Copy to Ext Disk

Copy 411 Files
Copy to lonVol RAN
Copy to Vol RAM
Copy to 3.5" Int Disk
Copy to Ext Disk

Format Disk
Format NonVol RAM
Format Vol RAM
Format 3.5" Disk

Format Ext Disk

MMEM :

MMEM :

MMEM

MMEM :
MMEM :
MMEM :
MMEM :

MMEM :
MMEM :
MMEM :
MMEM :

MMEM :
MMEM :
MMEM :
MMEM :

MOVE <filel>,<file2>!

DEL <file>'

:DEL % %14

COPY <filel>,<’MEM:file2’>!
COPY <filel>,<’RAM:file2’>!
COPY <filel>,<’INT:file2’>!

COPY <filel>,<’EXT:file2’>1:2

COPY ’#.%’ 'MEM:’ 13
COPY ’#.%’ RAM:’ 13
COPY ’#.%> »INT:’ 13

COPY ’#.%’,’EXT:’ 1,23

INIT ’MEM:’,<DOS|LIF>4
INIT ’RAM:’,<DOS|LIF>4
INIT ’INT:’,<DOS|LIF>4

INIT ’EXT:’,<DOS|LIF>2*4

1 <file>> may include the mass storage device mnemonic MEM:, INT:, EXT:, or RAM: before the actual name of the file. If the mass storage device is not explicitly
named the currently selected device is assumed. <file>, <file1> and <file2>> are <string>> parameters.

2 Active controller status must be passed to the instrument (from IBASIC or the external controller) for external disk access.

3 "*.* is the form for “all files” with a DOS formatted disk — a LIF formatted disk uses "** with no extension.

4 When a disk is formatted using the front panel keys the DOS format is always used. The LIF format is available when the mnemonic is used.

11-29

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Directory Utilities
Change Directory
Make Directory

Remove Directory

FastBecall on OFF

MMEM: CDIR <directory>!
MMEM:MDIR <directory>!

MMEM:RDIR <directory>!

DISP:MENU:REC:FAST <ON|OFF>

1 For use with DOS formatted disks only — the analyzer does not support LIF disks that use HFS (hierarchical file structure). <directory> is a < string>

parameter.

11-30

SCPI Commands

Menu Map with SCPI Commands

KEYSTROKES

SCPI COMMAND

HARD COPY

Start

Abort

Select Copy Port
Restore Defaults

Select

Hardcopy Address (Number) (ENTER)
Baud Rate (Number) (ENTER)

Xon/Xoff

DTR/DSR

Define Printer
Restore Defaults
Monochrome
Color
Portrait
Landscape

Auto Feed ON off

HCOP;

HCOP:

*WAT

ABOR

No SCPI Command

HCOP
PORT

SYST:
SYST:
SYST:
SYST:

:DEV:LANG

<PCL|HPGL | IBM|EPSON | PCX>;

<CENT | SER | GPIB | MMEM>

COMM:GPIB:HCOP:ADDR <num>

COMM: SER

COMM: SER:

COMM: SER:

No SCPI Command

HCOP:
HCOP:
HCOP:

HCOP:

DEV1:COL
DEV1:COL
PAGE:0RI

PAGE:0RI

:TRAN:BAUD <num>
TRAN:HAND XON

TRAN:HAND DTR

OFF
ON
PORT
LAND

HCOP:ITEM1:FFE:STAT <ON|OFF>

11-31

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

More Printer

Restore Defaults

Printer Resolution

Top Margin (Number) (ENTER)
Left Margin (Number) (ENTER)
Print Width (Number) (ENTER)

Define Plotter

Restore Defaults

Monochrome

Color

Set Pen Numbers

Monochrome Pen (Number) (ENTER)
Default Pen Colors

Trace 1 Pen (Number) (ENTER)
Trace 2 Pen (Number) (ENTER)
Memory 1 Pen (Number) (ENTER)
Memory 2 Pen (Number) (ENTER)
Graticule Pen (Number) (ENTER)
Graphics Pen (Number) (ENTER)

Auto Feed on OFF

No SCPI Command

HCOP:DEV:RES <num>

HCOP:PAGE:MARG:TOP <num>
HCOP:PAGE:MARG:LEFT <num>

HCOP:PAGE:WIDT <num>

No SCPI Command
HCOP:DEV2:COL OFF

HCOP:DEV2:COL ON

No SCPI Command
No SCPI Command
No SCPI Command
No SCPI Command
No SCPI Command
No SCPI Command
No SCPI Command
No SCPI Command

HCOP:ITEM2:FFE:STAT <ON|OFF>

11-32

Menu Map with SCPI Commands

SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Define Hardcopy

Restore Defaults

Graph and Mkr Table

Graph Only

Mkr Table Only

List Trace Values

Define Graph
Restore Defaults
Trace Data ON off
Graticule ON off
Annotation ON off
Mkr Symbol ON off

Title + Clk ON off

No SCPI Command

HCOP:DEV:MODE GMAR
HCOP:DEV:MODE GRAP
HCOP:DEV:MODE MARK
HCOP:DEV:MODE TABL

No SCPI Command

HCOP:ITEM:TRAC:STAT <ON|OFF>
HCOP:ITEM:GRAT:STAT <ON|OFF>
HCOP:ITEM:ANN:STAT <ON|OFF>
HCOP:ITEM:MARK:STAT <ON|OFF>

HCOP:ITEM:TITL:STAT <ON|OFF>

11-33

Menu Map with SCPI Commands

(SYSTEM OPTIONS) SCPI Commands

KEYSTROKES SCPI COMMAND
(SYSTEM OPTIONS)
IBASIC
Run PROG:STAT RUN
Continue PROG:STAT CONT
Step PROG:EXEC ’STEP’
Edit No SCPI Command

Key Record on OFF

No SCPI Command

Utilities
Clear Program PROG:DEL
Stack Size PROG:MALL <size>
Secure No SCPI Command

IBASIC Display

None DISP:PROG OFF
Full DISP:PROG FULL
Upper DISP:PROG UPP
Lower DISP:PROG LOW
HP-IB
HP 8714B Address (Number) (ENTER) SYST:COMM: GPIB: ADDR <num>'
Talker Listener SYST:COMM: GPIB: CONT OFF?
System Controller SYST:COMM: GPIB: CONT ON’
HP-1B Echo on OFF SYST:COMM: GPIB:ECHO <ON|OFF>

1 A five second delay is required before a command is sent to the new address.

2 For use with IBASIC running on the analyzer's internal controller — this command cannot be executed from an external controller. Use *OPG? and wait for a reply
hefore sending any OUTPUT 7xx commands from IBASIC.

11-34

Menu Map with SCPI Commands

(SYSTEM OPTIONS) SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

Operating Parameters
Hardcopy Screen
Hardcopy All

Abort

System Config
Set Clock

Set Year (Number) (ENTER)
Set Month (Number) (ENTER)
Set Day (Number) (ENTER)

Set Hour (Number) (ENTER)
Set Minute (Number) (ENTER)

Round Seconds

Clock Format
YYYY-VUN-DD HH : MM
MM-DD-YYYVY HH : MM
DD-MM-YYYVY HH : MM
Numeric
Alpha
Seconds ON off

Done

Beeper Volume (Number) (ENTER)

No SCPI Command

HCOP
HCOP

SYST:
SYST:

SYST:

SYST:
SYST:

SYST:

DISP
DISP
DISP
DISP
DISP
DISP

SYST:

:DEV:
:ABOR

DATE
DATE

DATE

TIME
TIME

TIME

:ANN:
:ANN:
:ANN:
:ANN:
:ANN:
:ANN:

BEEP

MODE ISET;:HCOP;#*WAI

<year>,<month>,<day>1
<year>,<month>,<day>1

<year>,<month>,<day>1

<hour>,<minute>,<second>1
<hour>,<minute>,<second>1

<hour>,<minute>,01

CLOC:DATE:FORM YMD
CLOC:DATE:FORM MDY
CLOC:DATE:FORM DMY
CLOC:DATE:MODE NUM
CLOC:DATE:MODE ALPH

CLOC:SEC <ON|OFF>

:VOL <num>2

1 <year>,<month>,<day>,<hour>,<minute > and <second>> are all <num>> parameters. Also, these keys do not generate keystroke recording BASIC

statements.

2 Number is a fraction, for example 90% would be expressed as 0.90

11-35

Menu Map with SCPI Commands

(SYSTEM OPTIONS) SCPI Commands (continued)

KEYSTROKES

SCPI COMMAND

External CRT Adijust

Service!

Restore Defaults

Vertical Back Porch (Number) (ENTER)

Vertical Frnt Porch (Number) (ENTER)
Horizontal Back Porch (Number) (ENTER)

Horizontal Frnt Porch (Number) (ENTER)

No SCPI Command
No SCPI Command
No SCPI Command
No SCPI Command
No SCPI Command

1 The Service menu is described in the Service Guide.

11-36

12

SCPI Command Summary

SCPI Command Summary

This chapter contains all of the HP-IB commands recognized by the analyzer
and a brief description. <num>, <char>, <string> and <block> refer to

the parameter type expected by the instrument as part of the command.

All commands have both command and query forms unless specified as
command only or query only. Unless otherwise specified, add a “?” to create
a query from the command form. For example, the command to select the
log magnitude format for the data displayed is CALCulate[1]2] : FORMat
MLOGarithmic. To query which format is active the corresponding command
is CALCulate[1]2] :FORMat?. The response to the query is the short form
of the mnemonic for the active format, in this example MLOG.

The FORM column gives the parameter type returned by the instrument

in response to a query. NR1, NR2 and NRS3 refer to the different types of
numeric data. CHAR (character data), STRING (string data) and BLOCK
(block data) are also used to describe response types. These parameter types
are described in the “Parameter Types” section of Chapter 10.

Some numeric parameters may be followed by an appropriate suffix.
Commands that accept a suffix also allow standard metric multipliers to be
combined with the suffix. For example, commands that set a frequency will
accept HZ, KHZ, MHZ and GHZ. Commands that set a time will accept S,
MS, US, NS, PS, FS and AS. Note that case is ignored. The multiplier “M”
is interpreted as either milli or Mega, depending on context. If no suffix is
included, the default units for the parameter are used.

ABORt

SUBSYSTEM COMMANDS FORM DESCRIPTION

ABORt

command only | Abort and reset the sweep in progress.

12-2

SCPI Command Summary

CALCulate
SUBSYSTEM COMMANDS FORM DESCRIPTION
CALCulate[1]2] :DATA?! query only | Query the formatted data trace — functionally equivalent to the

BLOCK or NR32

command TRAC? CH<1|2>FDATA.

CALCulate[1]2] :FORMat <char> CHAR Select the display format for the measurement data — choose
from
MLOGarithmic |MLINear | SWR|DBVS|DBMV3
DBUV3
or
(5—PHASe | SMITh|POLar | GDELay | REAL
< \vglue -1.75pc> [IMAGinary|MIMPedance.
£5CALCulate[1]2] : GDAPerture: APERture NR3 Set the group delay aperture as a ratio of desired aperture /
<num> measured frequency span.
&5cALCulate[112] : GDAPerture:SPAN <num> NR3 Specifies the group delay aperture in Hertz.
CALCulate[1]2] :LIMit:DISPlay <ON | OFF>* NR1 Turn onfoff display of limit lines.
CALCulate[1]2]:LIMit:MARKer:FLATness NR3 Set the maximum value for a flatness limit test.
:MAXimum <num>
CALCulate[1]2]:LIMit:MARKer:FLATness NR3 Set the minimum value for a flatness marker limit test.
:MINimum <num>
CALCulate[1]2]:LIMit:MARKer:FLATness NR1 Turn on/off flatness marker limit test.
:STATe <ON|OFF>*
CALCulate[1]2]:LIMit:MARKer:STATistic NR3 Set the maximum value for a statistic mean limit test.
:MEAN : MAXimum <num>
CALCulate[1]2]:LIMit:MARKer:STATistic NR3 Set the minimum value for a statistic mean limit test.
:MEAN:MINimum <num>
CALCulate[1]2]:LIMit:MARKer:STATistic NR1 Turn on/off statistic mean marker limit test.

:MEAN :STAte <ON|OFF>*

1 Refer to Chapter 6, “Trace Data Transfers,” and to the "ASCDATA" and "REALDATA” example programs in Chapter 8 for more information on this command.
2 The parameter type of the data is determined by the format selected — FORMat REAL uses BLOCK data, FORMat ASGii uses NR3 data separated by commas.

3 Option 1EC (75 Q) only

4 Binary parameters accept the values of 1 {on) and 0 (off} in addition to ON and OFF.

&5 indicates HP 8712B/14B only

12-3

SCPI Command Summary

CALCulate (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION
CALCulate[1]2]:LIMit:MARKer:STATistic NR3 Set the maximum value for a statistic peak-to-peak limit test.
:PEAK :MAXimum <num>
CALCulate[1]2]:LIMit:MARKer:STATistic NR3 Set the minimum value for a statistic peak-to-peak limit test.
:PEAK:MINimum <num>
CALCulate[1]2]:LIMit:MARKer:STATistic NR1 Turn on/off statistic peak-to-peak marker limit test.
:PEAK:STAte <ON|QFF>!

CALCulate[1]2]:LIMit:SEGMent[1]2] NR3 Set the Begin Limit for the specified limit segment.
--12]:AMPLitude:S TARt <num>’
CALCulate[1]2]:LIMit:SEGMent[1]2] NR3 Set the End Limit for the specified limit segment.

..12] : AMPLitude:S TOP <num>2

CALCulate[1]2]:LIMit:SEGMent : AOFF

command only

Turn off all limit segments for a given channel — deletes all
segments in the channel’s limit table.

CALCulate[1]2]:LIMit:SEGMent[1]2] NR3 Set the Begin Frequency for the specified limit segment.
--12] :FREQuency:S TARt <num>>

CALCulate[1]2]:LIMit:SEGMent[1]2] NR3 Set the End Frequency for the specified limit segment.
.-12] :FREQuency:S TOP <num>>

CALCulate[1]2]:LIMit:SEGMent[1]2] NR3 Set the Begin Power for the specified limit segment.
-+12]:POWer: STARt <num>

CALCulate[1]2]:LIMit:SEGMent[1]2] NR3 Set the End Power for the specified limit segment.
-+12]:POWer: STOP <num>

CALCulate[1]2]:LIMit:SEGMent[1]2] NR1 Turn onjoff the specified limit segment — adds or deletes the
..12] :STATe <ON|OFF>! segment.
CALCulate[1]2]:LIMit:SEGMent[1]2] CHAR Set the limit type for the specified segment, choose from

--12] : TYPE <char>

LMAX |LMIN|PMAX|PMIN (Max Line, Min Line, Max
Point, Min Point] — sets all of the segment’s limit parameters
to their default values.

1 Binary parameters accept the values of 1 {on} and 0 (off} in addition to ON and OFF.

2 Numeric parameters may include an appropriate suffix; if no suffix is included, the default (HZ for frequency or § for time) is assumed.

12-4

SCPI Command Summary

CALCulate (continued)

SUBSYSTEM COMMANDS

FORM

DESCRIPTION

CALCulate[1]2] :LIMit:STATe <ON|OFF>!

NR1

Turn on/off the limit test.

CALCulate[1]2] :MARKer:AOFF

command only

Turn off all markers for a given channel — this has the effect
of turning off marker functions and tracking as well.

CALCulate[1]2] :MARKer:BWIDth <num>2

NR3

Calculate the bandwidth of a bandpass filter — num is the
target bandwidth (-3 for the 3 dB bandwidthl.

CALCulate[1]2] :MARKer:FUNCtion
:RESult?

query only
NR3[,NR3,
NR3,NR3]

Query the results of the active marker function — MAX and
MIN return the amplitude; TARG returns the frequency;
BWID returns bandwidth, center frequency, Q and loss; STAT
returns the frequency span, the mean and standard deviation
of the amplitude response, and the peak-to-peak ripple; FLAT
returns the frequency span, gain, slope and flatness; and
FSTAT returns the insertion loss and peak-to-peak ripple of
the passband of a filter, as well as the maximum signal
amplitude in the stopband. Refer to the “MARKERS" example
program in Chapter 8 for more information.

CALCulate[1]2] :MARKer:FUNCtion
[:SELect] <char>

CHAR

Select the active marker function — choose from

OFF | MAXimum | MINimum|TARGet |BWIDth |
NOTCh |MPEak | MNOTch|STATistics |
FLATness|FSTATistics.

CALCulate[1]2] :MARKer:FUNCtion
:TRACking <ON|OFF>!

NR1

Turn on/off marker function tracking.

CALCulate[1]2] :MARKer[1]2]---8] :GDELay?

query only

Returns the group delay value, in seconds, at the specified
marker.

CALCulate[1]2] :MARKer[1]2]---8]
:MAXimum

command only

Set the specified marker to the maximum value on the trace.

CALCulate[1]2] :MARKer[1]2]---8]
:MAXimum:LEFT

command only

Moves the specified marker to the next local maximum to the
left.

CALCulate[1]2] :MARKer[1]2]---8]
:MAXimum:RIGHt

command only

Moves the specified marker to the next local maximum to the
right.

1 Binary parameters accept the values of 1 {on} and O (off) in addition to ON and OFF.

2 Numeric parameters may include an appropriate suffix; if no suffix is included, the default (HZ for frequency or § for time) is assumed.

12-5

SCPI Command Summary

CALCulate (continued)

SUBSYSTEM COMMANDS

FORM

DESCRIPTION

CALCulate[1]2] :MARKer[1]2]---8]
:MINimum

command only

Set the specified marker to the minimum value on the trace.

CALCulate[1]2] :MARKer[1]2]---8]

:MINimum:LEFT

command only

Moves the specified marker to the next local minimum to the
left.

CALCulate[1]2] :MARKer[1]2]---8]

:MINimum:RIGHt

command only

Moves the specified marker to the next local minimum to the
right.

CALCulate[1]2] :MARKer:MODE <char> CHAR Turn onfoff delta marker state — choose ABSolute or
RELative.
CALCulate[1]2] :MARKer:NOTCh <num>! NR3 Calculate the notch width of a notch filter — num is the
target notch width (-6 for the 6dB bandwidthl.
CALCulate[1]2] :MARKer[1]2] 8] NR3 Set the specified marker point.
:POINt?
CALCulate[1]2] :MARKer[1]2]--8] :X <num> NR3 Set the specified marker frequency lor power if in power
sweep)
CALCulate[1]|2] :MARKer:REFerence:X? query only | Query the frequency of the reference marker.
NR3
CALCulate[1]|2] :MARKer:REFerence:Y? query only | Query the amplitude of the reference marker.
NR3
CALCulate[1]2] :MARKer[1]2]---8] NR1 Turn onjoff the specified marker.
[:STATe] <ON|OFF>
CALCulate[1]2] :MARKer[1]|2]---8] CHAR,NR3 Perform a marker search for a target value — char is the
:TARGet <char>,<num>1 direction LEFT or RIGHt.
&9CALCulate[1]2] :MARKer[1]|2]--8]:Y query only | Query the specified marker's inductance when in Smith chart
NR3 format.
:INDuctance 7
&3CcALCulatel[1]2] :MARKer[1]2]--8]1:Y query only | Query the specified marker's magnitude when in polar format.
NR3

:MAGNitude?

1 Numeric parameters may include an appropriate suffix; if no suffix is included the default (HZ for frequency or $ for time] is assumed.

2 Refer to "Displaying Measurement Results” in Chapter 7 of the User's Guide for more information on using this command.

12-6

&5 indicates HP 8712B/14B only

SCPI Command Summary

CALCulate (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION

&5cALCulate[112] :MARKer[1]2]--81:Y query only | Query the specified marker’s phase value when in polar format.
NR3

:PHASe?

&5CALCulate[1]2] :MARKer[1]2]--8]:Y query only | Query the specified marker's reactance value when in Smith
NR3 chart format.

:REACtance?

&5CALCulate[1]2] :MARKer[1]2]--8]:Y query only | Query the specified marker's resistance value when in Smith
NR3 chart format.

:RESistance 7

CALCulate[1]2] :MARKer[1]2]---8]:Y7 query only | Query the specified marker amplitude.
NR3

CALCulate[1]2] :MATH[:EXPRession] EXPRL Select a trace math expression — choose measurement trace

<expr>1 from (IMPL) for “data only" or

(IMPL/CH<1|2>SMEM) for “data / memory".

1 <expr> and EXPR represent expressions, a parameter type that consists of mathematical expressions that use character parameters and are enclosed in parentheses.

CALibration
SUBSYSTEM COMMANDS FORM DESCRIPTION
CALibration:ZERO:AUTO <ON|OFF|ONCE>! NR1 Turn on/off the broadband detector autozeroing function.

1 Binary parameters accept the values of 1 {on} and O (off) in addition to ON and OFF.

& indicates HP 8712B/14B only 12-7

SCPI Command Summary

CONFigure
SUBSYSTEM COMMANDS FORM DESCRIPTION
CONFigure <string> STRING Configure the analyzer to measure a specific device type and

parameter {the (BEGIN) function] — choose from one of

the following strings:

’AMPLifier:TRANsmission’
’AMPLifier:REFLection’
’AMPLifier:POWer’
’FILTer:TRANsmission’
’FILTer:REFLection’
’BBANd:TRANsmission’
’BBANd:REFLection’
’MIXer:CLOSs’
’MIXer:GDEL’
’MIXer:REFLection’
’CABLe:TRANsmission’
’CABLe:REFLection’
’CABLe:FAULT’
’CABLe:SRL’

12-8

SCPI Command Summary

DIAGnostic
SUBSYSTEM COMMANDS FORM DESCRIPTION
DIAGnostic:CCONstans:INSTalled? query only | Query if correction constants are installed in flash. Returns a 1
NR1 if true, and a O if false.

DIAGnostic:CCONstants:LOAD

command only

load default factory calibration constants from floppy disk to
memory.

DIAGnostic:CCONstants:STORE:DISK

command only

Store default factory calibration constants from memory to
floppy disk.

DIAGnostic:CCONstants:STORE:EEPRom

command only

Store default factory calibration constants from memory to flash
EEPROM.

DIAGnostic:PORT:READ? query only | Reads the rear panel /0 ports.

<port><register>! NR1, NR1

DIAGnostic:PORT:WRITE NR1, NR1, NR1 | Writes to the rear panel I/0 ports.

<port><register>1

DIAGnostic:SNUMber <string>? query only | Query the instrument's serial number.
STRING

DIAGnostic:SPUR:METHod NR1 Select the spur avoid mode.

<NONE|DITHer|AVOid>

1 Refer to “Controlling Peripherals” in Chapter 7 of the User’s Guide for more information on using this command.

12-9

SCPI Command Summary

Table 12-1. Writeable Ports

Port Number Register Description

15 0 Outputs 8-bit data to the Cent_DO through D7 lines of the Centronics port. Cent_DO0 is the
least significant bit, Cent_D7 is the most significant bit. Checks Centronics status lines for:

Out of Paper
Printer Not on Line
BUSY
ACKNOWLEDGE

15 1 Sets/clears the user hit according to the least significant bit of A. A least significant hit equal
to 1 sets the user bit high. A least significant bit of 0 clears the user bit.

15 2 Sets/clears the limit pass/fail bit according to the least significant bit of A. A least significant
bit equal to 1 sets the pass/fail bit high. A least significant bit of 0 clears the pass/fail bit.

15 3 Outputs 8-bit data to the Cent_DO through D7 lines of the Centronics port. Cent_DO0 is the
least significant bit, Cent_D7 is the most significant bit. Does not check Centronics status
lines.

9 0 Outputs a byte to the serial port. The byte is output serially according to the configuration

for the serial port.

|
NOTE

When using the WRITEIO(15,0) or WRITEIO(15,3) command, the Printer_Select Line is
set High. However, when the instrument is daing hardcopy, the Printer_Select Line is set low. The
Printer_Select line may or may not be used by individual printers. Check with your printer manual.

12-10

Table 12-2. Readahle Ports

SCPI Command Summary

Port Number Register Description
9 0 Reads the serial port.
15 0 Reads the 8-bit data port Cent_DO through D7.
15 1 Reads the user bit.
15 2 Reads the limit test pass/fail hit.
15 10 Reads the 8-bit status port.

D0—Cent_acknowledge
D1—Cent_busy
D2—Cent_out_of_paper
D3—Cent_on_line
D4—Cent_printer_err

12-11

SCPI Command Summary

DISPlay
SUBSYSTEM COMMANDS FORM DESCRIPTION
DISPlay:ANNotation:CHANnel[1|2]:USER NR1 Enables user-defined channel annotation.
:STATe <OFF|ON>!2
DISPlay:ANNotation:CHANnel[1|2]:USER STRING Specifies the string to be displayed in the channel annotation
:LABel:DATA <string>2 area [above the graticule).
DISPlay:ANNotation:CLOCk:DATE CHAR Select the Year/Month/Day ordering of the date in the clock
:FORMat <char> display — choose from YMD | MDY | DMY.
DISPlay:ANNotation:CLOCk:DATE:MODE CHAR Select the format for the date in the clock display — choose
<char> NUMeric or ALPHa.
DISPlay:ANNotation:CLOCk:MODE <char> CHAR Select how the clock will appear in the measurement display
title area — choose from LINE1 |LINE2|OFF.
DISPlay:ANNotation:CLOCk:SEConds NR1 Turn on/off display of seconds in the clock display.
[:STATe] <ON|OFF>!
DISPlay:ANNotation:FREQuency[1]2] CHAR Set the frequency annotation on the display — choose SSTOP
:MODE <char> [start/stop), CSPAN [center/span] or CW.
DISPlay:ANNotation:FREQuency[1]2] CHAR Set the resolution of display frequency values — choose from
:RESolution <char> MHZ |KHZ | HZ.
DISPlay:ANNotation:FREQuency[1]2] NR1 Enables user-defined frequency annotation.
:USER:STATe [OFF|ON]!?2
DISPlay:ANNotation:FREQuency[1]2] NR3 Specifies the start value for user-defined frequency annotation.
:USER:STARt <num>’
DISPlay:ANNotation:FREQuency[1]2] NR3 Specifies the stop value for user-defined frequency annotation.
:USER:STOP <num>2
DISPlay:ANNotation:FREQuency[1]2] STRING Specifies the suffix for user defined frequency annotation.
:USER:SUFFix:DATA <string>’
DISPlay:ANNotation:FREQuency[1]2] STRING A user-defined X-axis label.
:USER:LABel:DATA <string>
DISPlay:ANNotation:MARKer[1]2] NR1 Enable/disable the active marker annotation for channels

[:STATe] <ON|OFF>!

1 and 2.

1 Binary parameters accept the values of 1 {on} and 0 (off} in addition to ON and OFF.

2 Refer to "Displaying measurement Results” in Chapter 7 of the User’s Guide for more information on using this command.

12-12

SCPI Command Summary

DISPlay (continued)

SUBSYSTEM COMMANDS

FORM

DESCRIPTION

DISPlay:ANNotation:

MESSage:AOFF

command only

Turns off any currently showing message window — includes
message window, active entry and IBASIC window.

DISPlay:ANNotation:

MESSage : CLEar!

command only

Removes a user-defined pop-up message window.

DISPlay:ANNotation:MESSage:STATe NR1 Enable/disable the message window — CAUTION: this
<ON | OFF>2 suppresses display of all messages {even ERROR messages).
DISPlay:ANNotation:MESSage:DATA STRING Displays a user-defined message in the pop-up message window.
<string>1 Optional argument specifies the timeout: choose from
NONE | SHORt | MEDium|LONG.
DISPlay:ANNotation:TITLe[1]2] :DATA STRING Enter a string for the specified title line.
<string>1
DISPlay:ANNotation:TITLe[:STATe] NR1 Turn on/off display of the title and clock.
<ON | OFF>2
DISPlay:ANNotation:YAXis:MODE <char> CHAR Set mode for the Y-axis labels — choose RELative or
ABSolute
DISPlay:ANNotation:YAXis[:STATe] NR1 Turn onfoff Y-axis labels.
<ON | OFF>2
DISPlay:FORMat <char> CHAR Select the format {full or split screen] for displaying trace data
— choose SING1e {overlayl or ULOWex {split).
DISPlay:MENU:KEY[1]2]..-7] <string>1 STRING Specifies the softkey menu labels from a remote controller or
IBASIC
DISPlay:MENU[2]:KEY[1]|2]..-7] <string>1 STRING Spacifies the softkey menu labels when using user-defined
BEGIN key. {For option 1C2, IBASIC, only)
DISPlay:MENU:RECall:FAST[:STATe] NR1 Turn on/foff fast recall mode.
<ON | OFF>2
DISPlay:PROGram[:MODE] <char> CHAR Select the portion of the analyzer's screen to be used as an HP
Instrument BASIC display — choose from
OFF |FULL | UPPer | LOWer.
DISPlay:WINDow[1]2]10]:GEOMetry query only | Query the absolute pixel coordinates of the lower left corner of
:LLEFT? NR1,NR1 the selected display window.

1 Refer to “Operator Interaction” in Chapter 7 of the User’s Guide for more information on using this command.

2 Binary parameters accept the values of 1 {on) and 0 (off} in addition to ON and OFF.

12-13

SCPI Command Summary

DISPlay (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION
DISPlay:WINDow[1]2]10]:GEOMetry query only | Query the width and height {in pixels) of the selected display
:SIZE? NRT,NR1 window.
DISPlay:WINDow[1]2]10]:GEOMetry query only | Query the absolute pixel coordinates of the upper right corner
:URIGHT? NR1,NR1 of the selected display window.
DISPlay:WINDow:GRAPhics:BUFFer NR1 Turn on/foff buffering of user graphics commands.

[:STATe] <ON|OFF>!

DISPlay:WINDow[1]2]10] :GRAPhics?
:CIRCle <num>

command only

Draw a circle of the specified Y-axis radius centered at the
current pen location — num is the diameter in pixels.3

DISPlay:WINDow[1]2]10] :GRAPhics? command only | Clear the user graphics and graphics buffer for the specified
:CLEar window.
DISPlay:WINDow[1]2]10] :GRAPhics? NR1 Set the color of the user graphics pen — choose from O for
:COLor <num> grasg, 1 for bright, and 2 for dim.
DISPlay:WINDow[1]2]10] :GRAPhics? command only | Draw a line from the current pen position to the specified new
[:DRAW] <numi>,<num2> pen position — numl and num?2 are the new absolute X
and Y coordinates in pixels.3
DISPlay:WINDow[1]2]10] :GRAPhics? command only | Draw a label with the lower left corner at the current pen
:LABel <string> |gcati0n_3
DISPlay:WINDow[1]2]10] :GRAPhics? CHAR Select the user graphics label font — choose from
:LABel:FONT <char> SMALL|HSMall|NORMall
HNORmal | BOLD |HBOLd | SLANt | HSLant.
DISPlay:WINDow[1]2]10] :GRAPhics? NRT,NR1 Move the pen to the specified new pen position — numi and

:MOVE <numil>,<num2>

num?2 are the new absolute X and Y coordinates in pixels.3

DISPlay:WINDow[1]2]10] :GRAPhics?
:RECTangle <numil>,<num2>

command only

Draw a rectangle of the specified size with lower left corner at
the current pen position — numl and num?2 are the width
and height in pixels.3

DISPlay:WINDow[1]2]10]:GRAPhics?

query only | Query whether a window is enabled for user graphics
:STATe? NR1 commands.
DISPlay:WINDow[1]2] :TRACe: NR1 Turn onfoff display graticule.

GRATicule:GRID[:STATe] <ON|OFF>!

1 Binary parameters accept the values of 1 {on} and 0 (off} in addition to ON and OFF.

2 Refer to Chapter 7, “Using Graphics,” for more information.

3 Refer to Chapter 7, and to the example program titled "GRAPHICS” in Chapter 8 for more information.

12-14

SCPI Command Summary

DISPlay (continued)
SUBSYSTEM COMMANDS FORM DESCRIPTION
DISPlay:WINDow[1]2]:TRACe[1]2] NR1 Turn onfoff the display of trace and memory data from the

[:STATe] <ON|OFF>!

specified channel.

DISPlay:WINDow[1]2]:TRACe:Y
[:SCALe]: AUTO ONCE

command only

Scale the measurement data for a best fit display.

DISPlay:WINDow[1]2]:TRACe:Y
[:SCALe] :PDIVision <num>?

NR3

Specify the height (dB or units per division] of each vertical
division of the specified channel.

DISPlay:WINDow[1]2]:TRACe:Y
[:SCALe]:RLEVel <num>>

NR3

Specify the value for the Y-axis reference position for the
specified channel.

DISPlay:WINDow[1]2]:TRACe:Y
[:SCALe]:RPOSition <num>

NR3

Specify the Y-axis reference position for the specified channel.

1 Binary parameters accept the values of 1 {on} and O (off) in addition to ON and OFF.

2 Numeric parameters may include an appropriate suffix; if no suffix is included, the default (HZ for frequency or § for time) is assumed.

FORMat
SUBSYSTEM COMMANDS FORM DESCRIPTION
FORMat :BORDer <char> CHAR Specify the byte order used for HPIB data transfer — choose
NORMal or SWAPped (for PC-compatible systems|.
FORMat [:DATA] <char>[,<num>] CHARLNR1] | Specify the data format for use during data transfer — choose
from REAL, 64 |REAL,32|INTeger,16| ASCii.

12-15

SCPI Command Summary

HCOPy

SUBSYSTEM COMMANDS

FORM

DESCRIPTION

HCOPy : ABORt

command only

Aborts any hardcopy currently in progress.

HCOPy:DEVice[1]2]:COLor <ON | OFF>! NR1 Select monochrome OFF or color ON mode for hardcopy
output — use device 1 for printers and 2 for plotters.

HCOPy:DEVice:LANGuage <char> CHAR Select the language for hardcopy output — choose from
PCL|HPGL | EPSon | IBM | PCX?

HCOPy:DEVice:MODE <char> CHAR Select the graph and/for tablels] to appear on a hardcopy plot
— choose from
GMARker |GRAPh|ISETtings | MARKer |
TABLe.

HCOPy:DEVice:PORT <char> CHAR Select the communications port for hardcopy output — choose
from CENTronics|SERial|GPIB|MMENory.

HCOPy:DEVice:RESolution <num> NR1 Set the printer resolution in millimeters.

HCOPy [: IMMediate]

command only

Initiates a hardcopy output [print or plot.

HCOPy:ITEM: ANNotation:STATe <ON | OFF>! NR1 Turns on/off channel and frequency annotation as part of
hardcopy output.

HCOPy : ITEM[1|2] : FFEed:STATe <ON|OFF>! NR1 Turns onfoff an automatic form feed at the completion of
hardcopy output — use item 1 for printers and 2 for plotters.

HCOPy:ITEM:GRATicule:STATe <ON | OFF>! NR1 Turns on/off graticule as part of hardcopy output.

HCOPy: ITEM:MARKer:STATe <ON | OFF>! NR1 Turns on/off marker symbols as part of hardcopy output.

HCOPy:ITEM:TITLe:STATe <ON | OFF>! NR1 Turns on/off title and clock lines as part of hardcopy output.

HCOPy:ITEM:TRACe:STATe <ON | OFF>! NR1 Turns on/off trace data as part of hardcopy output.

HCOPy :PAGE:MARGin:TOP <num> NR2 Sets the top margin [for printer output] in millimeters.

HCOPy:PAGE:MARGin:LEFT <num> NR2 Sets the left margin {for printer output] in millimeters.

HCOPy:PAGE:ORIentation <char> CHAR Sets printer output page orientation — choose PORTrait or
LANDscape.

HCOPy:PAGE:WIDTh <num> NR2 Sets the print width {for printer output] in millimeters.

1 Binary parameters accept the values of 1 {on} and 0 (off} in addition to ON and OFF.

2 EPSon and IBM produce the same results.

12-16

SCPI Command Summary

INITiate
SUBSYSTEM COMMANDS FORM DESCRIPTION
INITiate[1]2]:CONTinuous <ON|OFF>! NR1 Set the trigger system to continuously sweep or to stop
sweeping.
INITiate[1]2][:IMMediate] command only | Initiate a new measurement sweep.

1 Binary parameters accept the values of 1 {on} and O (off) in addition to ON and OFF.

12-17

SCPI Command Summary

MMEMory
SUBSYSTEM COMMANDS FORM DESCRIPTION
MMEMory:CDIRectory <string> STRING Change the current directory on a DOS formatted disk — new

directory must be on the same mass storage device.

MMEMory:COPY <stringil>, <string2>1

command only

Copy a file — stringl is the source filg, string?2 is
the destination file.

MMEMory:DELete <string>1

command only

Delete a file — string is the filename.

MMEMory:INITialize
[<string>[,<char>[,<num>]]]

command only

Format a disk — string is the mass storage device MEM:
linternal memoryl, INT: linternal floppy disk drive] or EXT: .
Choose the disk format char from DOS or LIF, and the
interleave factor num.

MMEMory:LOAD:STATe 1, <string>l?

command only

Recall an instrument state from mass storage — string is
the filename.

MMEMory:MDIRectory <string>

command only

Make a new directory on a DOS formatted disk.

MMEMory :MSIS <string>

STRING

Select a mass storage device — choose MEM: linternal
memory), INT: linternal floppy disk drive] or EXT: .

MMEMory :MOVE <stringil>, <string2>1

command only

Move or rename a file — stringl is the source {or old)
filename and string2 is the destination {or new) filename.

MMEMory:RDIRectory <string>

command only

Delete a directory from a DOS formatted disk.

MMEMory:STORe:STATe 1, <string>l2

command only

Save an instrument state to mass storage — string is the
filename.

MMEMory:STORe:STATe:ISTate <ON | OFF>3 NR1 Turn onfoff the instrument state — part of the definition of a
saved file.

MMEMory:STORe:STATe:CORRection NR1 Turn on/off the calibration — part of the definition of a saved

<ON | OFF>> file

MMEMory:STORe:STATe:TRACe <0N | OFF>3 NR1 Turn on/off the data trace — part of the definition of a saved

file.

51,2

MMEMory:STORe:TRACe <char>,<string

command only

Stores an ASCII list of trace and frequency values to a file —
char is the formatted data trace CH<1|2>FDATA and
string is the filename.

1 Filenames may include the mass storage device — MEM: {internal non-volatile memory), RAM:

Wildcards 7 and * may be used.

(internal volatile memory), INT: {internal 3.5" disk drive) or EXT:.

2 Refer to "Measurement Setup and Control” in Chapter 7 of the User’s Guide for more information on using this command.

3 Binary parameters accept the values of 1 {on) and 0 (off) in addition to ON and OFF.

12-18

SCPI Command Summary

MMEMory (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION
MMEMory:TRANsfer :BDAT STRING, Copy a file to or from the analyzer's disk drive.3
<string>'[,<block>]? BLOCK
MMEMory:TRANsfer[:HFS] STRING, Copy a file to or from the analyzer's disk drive.

<string>1 [,<block>]?

1 Filenames may include the mass storage device — MEM: (internal non-volatile memory), RAM: (internal volatile memory), INT: (internal 3.5” disk drive) or EXT:.

Wildcards 7 and * may be used.
2 Refer to Chapter 8, “Example Programs” for more information on using this command.

3 Refer to the example programs PUTFILE and GETFILE in Chapter 8.

OUTPut
SUBSYSTEM COMMANDS FORM DESCRIPTION
OUTPut [:STATe] <ON|OFF>! NR1 Turn onfoff RF power from the source.

1 Binary parameters accept the values of 1 {on} and O (off) in addition to ON and OFF.

POWer
SUBSYSTEM COMMANDS FORM DESCRIPTION
POWer[1]2] : MODE <char> CHAR Specify either frequency sweep [FIXed| or power sweep
[SWEep].

12-19

SCPI Command Summary

PROGram
SUBSYSTEM COMMANDS FORM DESCRIPTION
PROGraml:CATalog'? query only | List the names of the defined IBASIC programs — response is
STRING "PROG" (if a program is present) or the null string {"*"*].
PROGram![:SELected]?:DEFine <block> BLOCK Download an IBASIC program from an external controller.

PROGram![:SELected]?:DELete:ALL

command only

Delete all IBASIC programs from the program buffer —
equivalent to an HP BASIC SCRATCH A command.

PROGram![:SELected]?:DELete
[:SELected]

command only

Delete the active IBASIC program — equivalent to an HP BASIC
SCRATCH A command.

PROGram'[:SELected]?:EXECute <string>

command only

Execute an IBASIC command.

PROGram![:SELected]?:MALLocate <num> NR1 Allocate memory space for IBASIC programs — choose from a
real number between 2048 and 4000000 bytes.
PROGram![:SELected]2:NAME ’PROG’ STRING Select the IBASIC program in the program buffer to be active.

PROGram![:SELected]?:NUMBer

BLOCK or NR33

load a new value for a numeric variable string in the

<string>,<data>3 active IBASIC program — num is the new value.
PROGram![:SELected]?:STATe <char> CHAR Select the state of the active IBASIC program — choose from
STOP | PAUSe|
RUN|CONTinue.
PROGraml[:SELected]Q:STRing STRING load a new value for a string variable stringl in the
<stringl>,<string2> active IBASIC program — string2 is the new value.
PROGram![:SELected]2:WAIT NR1 Wait until the IBASIC program completes.

1 Commands in the PROGram subsystem are only available when the HP Instrument BASIC (IBASIC) option is installed {option 1C2). They allow you to generate and

control IBASIC programs in the analyzer.

2 Commands grouped under the SELected mnemonic in the PROGram subsystem operate on the active program buffer.

3 The parameter type of the data is determined by the format selected — FORMat REAL uses BLOCK data, FORMat ASGii uses NR3 data separated by commas.

12-20

SCPI Command Summary

SENSe[1|2]
SUBSYSTEM COMMANDS FORM DESCRIPTION
SENSe[1|2]:AVERage:CLEar command only | Re-start the trace averaging function.
SENSe[1]|2] : AVERage:COUNt <num> NR1 Specify a count or weighting factor for the averaged
measurement data.
SENSe[1|2] : AVERage[:STATe] <ON|OFF>! NR1 Turn onfoff the trace averaging function.
SENSe[1|2] :BWIDth[:RESolution] <num> NR2 Specify the bandwidth of the IF receiver [fine, narrow, medium
HZ or wide] to be used in the measurement — choose 15 (fine
250 [narrow) 3700 [medium] or 6500 {widel.
SENSe[1]2] : CORRection:CAPacitance NR3 Select connector compensating capacitance value. {For use with
:CONNector <num> structural return loss measurements on analyzers with Option
100 only.]
SENSe[1]2] : CORRection:COLLect: ABORt command only | Aborts the calibration that is currently in progress.
SENSe[1]2] : CORRection:COLLect command only | Measure a calibration standard — select from
[:ACQuire] <char> STANdardl|STANdard2|STANdard3.
SENSe[1]2] : CORRection:COLLect STRING Select Cal Kit
:CKIT[:SELect] Choose from one of the following strings:
"COAX,7MM, TYPE-N,50, FEMALE'
'COAX,7MM, TYPE-N,50, MALE'
'COAX,3.5,APC-3.5,50,IMPLIED’
"USER,IMPLIED,IMPLIED,IMPLIED, IMPLIED’
'COAX,7l\/Il\/I,TYPE-I:,75,|l\/IPLIED’2
‘COAX,7MM, TYPE-N, 75, FEMALE’
"COAX,TMM, TYPE-N, 75, MALE'
SENSe[1]2] : CORRection:COLLect NR1 Select the instrument state for calibration — choose Full Band

:ISTate[:AUTO] <ON|OFF>!

{ON] or User Defined {OFF].

SENSe[1|2] :CORRection:COLLect
:METHod <char>

command only

Select the type of calibration — choose from
TRAN1|TRAN2|REFL3|NONE.

SENSe[1|2] :CORRection:COLLect:SAVE

command only

Complete and save current calibration.

SENSe[1]|2] :CORRection:CSET
[:SELect] DEFault

command only

Restore the “factory” default calibration for the current
measurement and channel.

SENSe[1]|2] :CORRection:CSET

[:SELect]?

query only
CHAR

Query the current calibration type — returns DEF (factory
default), FULL {full band} or USER {user defined).

1 Binary parameters accept the values of 1 {on} and O (off) in addition to ON and OFF.

2 Implemented in firmware revisions B.03.01 and above.

12-21

SCPI Command Summary

SENSe[1|2] (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION

CpSENSe[1]2] : CORRection:EDELay: TIME NR3 Specifies the electrical delay in seconds.

<num>!

E9SENSe[112] :CORRection:EXTension NR1 Enables port extensions.

[:STATe] <ON|OFF>?

£9SENSe[1]2] : CORRection:EXTension NR3 Specifies the port extension at the reflection port, in seconds.

:REFLection[:TIME] <num>!

E9SENSe[112] :CORRection:EXTension NR3 Specifies the port extension at the transmission port, in seconds,

:TRANsmission[:T IME] <num>!

£9SENSe[1]2] : CORRection:IMPedance NR3 Specifies the reference impedance for the Smith chart display.
The default is the analyzer's system impedance.

:INPut:MAGNitude <num>!

SENSe[1]2] : CORRection:LENGth:COAX NR2 Specifies the length of cable to be calibrated, in feet or meters.

<num> [For use with fault location measurements on analyzers with
Option 100 only.)

SENSe[1]2] : CORRection:LENGth NR2 Specifies the length of an interface connector, in mm or inches.

:CONNector <num> [For use with structural return loss measure;ments on analyzers
with Option 100 only.)

SENSe[1|2] :CORRection:L0OSS:COAX <num> NR2 Specifies the loss of a cable under test, in dB/100 ft. {For use
with fault location measurements on analyzers with Option 100
only.)

£9SENSe[1]2] : CORRection:0FFSet : PHASe NR3 Specifies the phase offset.

1 Numeric parameters may include an appropriate suffix; if no suffix is included, the default (HZ for frequency or § for time) is assumed.

2 Binary parameters accept the values of 1 {on) and 0 (off) in addition to ON and OFF.

12-22

&5 indicates HP 8712B/14B only

SCPI Command Summary

SENSe[1|2] (continued)

SUBSYSTEM COMMANDS

FORM

DESCRIPTION

SENSe[1]|2] :CORRection:MODel:CONNector
[:IMMediatel

command only

Measure the cable connector and determine the optimum values
for connector length and connector capacitance. {For use with
structural return loss measurements on analyzers with Option
100 only.]

SENSe[1]2] : CORRection:PEAK:COAX NR1 Turns multi-peak correction on or off. {For use with fault
[:STATe] <ON|OFF>! location measurements on analyzers with Option 100 only.)
2SENSe[1]2] : CORRection:RVELocity:COAX NR3 Specifies the velocity factor to be used when displaying the

<num>?2

distance for electrical length and port extensions. 1.0 = the
speed of light.

SENSe[1]|2] :CORRection:RVELocity
[:IMMediate]

command only

Measure the cable and determine the optimum values for cable
loss and velocity factor. {For use with fault location
measurements on analyzers with Option 100 only.)

SENSe[1]2] : CORRection:THReshold NR2 Selects multi-peak threshold value, in dB. [For use with fault

:COAX <num> location measurements on analyzers with Option 100 only.)

SENSe[1]2] :COUPle <char> CHAR Turn on/off the alternate sweep mode — choose ALL {coupled
sweep) or NONE lalternate sweep).

SENSe[1]2] :DETector[:FUNCtion] <char> CHAR Specify which detection mode is used to make the measurement
— choose BBANA (broadband) or NBANd [narrowband).

SENSe[1]2] :DISTance:STARt <num> NR3 Set the start distance for a fault location measurement, in feet
or meters. (For use with fault location measurements on
analyzers with Option 100 only.)

SENSe[1|2] :DISTance:STOP <num> NR3 Set the stop distance for a fault location measurement, in feet
or meters. (For use with fault location measurements on
analyzers with Option 100 only.)

SENSe[1]2] :DISTance:UNITs <char> CHAR Specifies distance units. Choose METers or FEET. (For use
with fault location measurements on analyzers with Option 100
only.)

SENSe[1|2] :FREQuency:CENTer <num>2 NR3 Set the center frequency of the RF source.

SENSe[1|2] :FREQuency:MODE <char> CHAR Set the fault location measurement to CENTex (bandpass| or

LOWPass.[for use with fault location measurements on
analyzers with Option 100 only.)

1 Binary parameters accept the values of 1 {on} and O (off) in addition to ON and OFF.

2 Numeric parameters may include an appropriate suffix; if no suffix is included the default (HZ for frequency or § for time) is assumed.

12-23

SCPI Command Summary

SENSe[1|2] (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION

SENSe[1|2] :FREQuency: SPAN <pum>! NR3 Set the frequency span of the RF source.

SENSe[1|2] :FREQuency: SPAN NR3 Set the maximum frequency span of the RF source for

-MAXimum <num>! bandpass fault location measurements. {For use with fault
location measurements on analyzers with Option 100 only.)

SENSe[1]|2] :FREQuency:STARt <pum>! NR3 Set the start frequency of the RF source.

SENSe[1|2] :FREQuency: STOP <pum>! NR3 Set the stop frequency of the RF source.

SENSe[1|2] :FREQuency:ZSTOp <pum>! NR3 Set the Z cutoff frequency for cable impedance calculations.
[For use with structural return loss measurements on analyzers
with Option 100 only.)

SENSe[1]2] :FUNCtion? query only | Query the measurement function — returns one of the

STRING XFR:POW . . .’ or *XFR:POW:RAT ... °’
strings described below.

SENSe[1]2] :FUNCtion:SRL:IMPedance NR2 Set the cable impedance. (For use with structural return loss

<num> measurements on analyzers with Option 100 only.)

SENSe[1]|2]:FUNCtion:SRL:MODE <char> CHAR Set the auto z function to AUTO or MANual. {For use with

structural return loss measurements on analyzers with Option
100 only.]

SENSe[1|2] :FUNCtion:SRL:SCAN
[:IMMediatel

command only

Start a cable scan. (For use with structural return loss
measurements on analyzers with Option 100 only.)

SENSe[1|2] :FUNCtion ’XFRequency
:POWer <num>’

command only

Specify that the receiver will measure the power into a the
single channel — choose from channels O (R], 1 {Al, 2 (B],
11 (Ext X) or 12 {Ext Y.

SENSe[1|2] :FUNCtion ’XFRequency
:POWer:RATio <num>,<num>’

command only

Specify that the receiver will measure a ratio of the power into
the two selected channels — choose from ratios 1,0 (AR,
2,0 (BRI, 12,0 (Ext Y/R], 11,12 (Ext X/Ext Y], 12,11
[Ext Y/Ext X), or 12,11 [AM Delay].

SENSe[1]2] :ROSCillator:S0OURce <char> CHAR Specify the source of the reference oscillator — select
INTernal or EXTernal.
SENSe[1]2]:STATe <ON|OFF>2 NR1 Turn onfoff the specified channel.

1 Numeric parameters may include an appropriate suffix; if no suffix is included, the default (HZ for frequency or § for time) is assumed.

2 Binary parameters accept the values of 1 {on) and 0 (off) in addition to ON and OFF.

12-24

SCPI Command Summary

SENSe[1/2] (continued) (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION

SENSe[1|2] :SWEep:POINts <num> NR1 Set the number of data points for the measurement — choose
from 315111[121151[101]2011401]1801]1601.

SENSe[1]2] : SWEep:TIME <num>! NR3 Set the sweep time.

SENSe[1]|2] : SWEep: TIME:AUTO NR1 Turn onfoff the automatic sweep time function.

<ON| OFF | ONCE>2

SENSe:SWEep:TRIGger :SOURce <char> CHAR Set the trigger source for each point in a sweep — choose
IMMediate or EXTernal (used in conjunction with
TRIGger [:SEQuence] : SOURcel.

SENSe:WINDow[:TYPE] <char> CHAR Set the window selection for fault location measurements.

Choose from RECTangular (Minimum|, HAMMing
[Medium], or KBESsel (Maximum]. {For use with fault
location measurements on analyzers with Option 100 only.)

1 Numeric parameters may include an appropriate suffix; if no suffix is included, the default (HZ for frequency or § for time) is assumed.

2 Binary parameters accept the values of 1 {on) and 0 (off} in addition to ON and OFF.

SOURce
SUBSYSTEM COMMANDS FORM DESCRIPTION
SOURce[1]2] :POWer[:LEVel] NR3 Set the RF power output from the source.
[:IMMediate] [: AMPLitude] <num>'
SOURce[1]2] :POWer:RANGe <char> CHAR Specifies the power sweep range. Choose from ATTenO
[ATTen10|ATTen20|ATTen30| ATTen40
| ATTen50| ATTen60.
SOURce[1]2] :POWer:STARt <num> NR3 Sets the power sweep start power.
SOURce[1]2] :POWer:STOP <num> NR3 Sets the power sweep stop power.

1 Numeric parameters may include an appropriate suffix; if no suffix is included, the default (HZ for frequency or § for time) is assumed.

12-25

SCPI Command Summary

STATus
SUBSYSTEM COMMANDS FORM DESCRIPTION
STATus :DEVice:CONDition? query only | Read and clear the Device Status condition registerl.
NR1
STATus :DEVice:ENABle <num> NR1 Set and query bits in the Device Status enable register.2
STATus:DEVice[:EVENt]? query only | Read and clear the Device Status event register.1
NR1
STATus:DEVice:NTRansition <num> NR1 Set and query hits in the Device Status negative transition
register.2
STATus:DEVice:PTRansition <num> NR1 Set and query hits in the Device Status positive transition
register.2
STATus:0PERation:AVERaging query only | Read the Averaging status condition register.1
:CONDition? NR1
STATus:0PERation:AVERaging:ENABle NR1 Set and query bits in the Averaging status enable register.2
<num>
STATus :0PERation:AVERaging[:EVENt]? query only | Read and clear the Averaging status event register.1
NR1
STATus:0PERation:AVERaging NR1 Set and query bits in the Averaging status negative transition
:NTRansition <num> register.2
STATus:0PERation:AVERaging NR1 Set and query bits in the Averaging status positive transition
:PTRansition <num> register.2
STATus :0PERation:CONDition? query only | Read the Operational Status condition register.1
NR1
STATus :0PERation:ENABle <num> NR1 Set and query bits in the Operational Status enable register.2
STATus:0PERation[:EVENt]? query only | Read and clear the Operational Status event register.1
NR1
STATus:0PERation:MEASuring query only | Read the Measuring status condition register.1
:CONDition? NR1
STATus:0PERation:MEASuring:ENABle NR1 Set and query bits in the Measuring status enable register.2

<num>

1 Returns the sum of the decimal weights (2 where n is the bit number) of all bits currently set. For more information on using the status registers refer to Chapter 5,

“Using Status Registers.”

2 num is the sum of the decimal weights of all bits to be set.

12-26

SCPI Command Summary

STATus (continued)
SUBSYSTEM COMMANDS FORM DESCRIPTION
STATus :0PERation:MEASuring[:EVENt]? query only | Read and clear the Measuring status event register.1
NR1

STATus:0PERation:MEASuring NR1 Set and query bits in the Measuring status negative transition
:NTRansition <num> register.2
STATus:0PERation:MEASuring NR1 Set and query bits in the Measuring status positive transition
:PTRansition <num> register.2
STATus:0PERation:NTRansition <num> NR1 Set and query bits in the Operational Status negative transition

register.2
STATus:0PERation:PTRansition <num> NR1 Set and query bits in the Operational Status positive transition

register.2

STATus :PRESet

command only

Set bits in most enable and transition registers to their default
state.

STATus:QUEStionable:CONDition? query only | Read and clear the Questionable Status condition register.1
NR1
STATus:QUEStionable:ENABle <num> NR1 Set and query bits in the Questionable Status enable register.2
STATus:QUEStionable[:EVENt]? query only | Read and clear the Questionable Status event register.1
NR1
STATus:QUEStionable:LIMit query only | Read and clear the Limit Fail condition register.1
:CONDition? NR1
STATus:QUEStionable:LIMit:ENABle <num> NR1 Set and query bits in the Limit Fail enable register.2
STATus:QUEStionable:LIMit[:EVENt]? query only | Read and clear the Limit Fail event register.1
NR1
STATus:QUEStionable:LIMit NR1 Set and query bits in the Limit Fail negative transition register.2
:NTRansition <num>
STATus:QUEStionable:LIMit NR1 Set and query bits in the Limit Fail positive transition register.2
:PTRansition <num>
STATus:QUEStionable:NTRansition <num> NR1 Set and query bits in the Questionable Status negative

transition register.2

1 Returns the sum of the decimal weights (2™ where n is the bit number) of all bits currently set. For more information on using the status registers refer to Chapter 5,

“Using Status Registers.”

2 num is the sum of the decimal weights of all bits to be set.

12-27

SCPI Command Summary

STATus (continued)
SUBSYSTEM COMMANDS FORM DESCRIPTION
STATus:QUEStionable:PTRansition <num> NR1 Set and query bits in the Questionable Status positive transition
rotar 1
register.

1 num is the sum of the decimal weights of all bits to he set.

12-28

SCPI Command Summary

SYSTem
SUBSYSTEM COMMANDS FORM DESCRIPTION
SYStem:BEEPer[:IMMediate] NR3, NR3, NR3 | Instructs the analyzer to beep. Arguments are frequency (Hzl,
[<freq>[,<dur>[,<vol>]1] 1 duration {seconds), and volume {0 to 1).
SYSTem:BEEPer:VOLume <num> NR2 Set the volume of the beeper — num is a number between
0 for 0% and 1 for 100%.
SYSTem:COMMunicate:GPIB:CONTroller NR1 Makes the HP 8711 the system controller.
[:STATe] <ON|QFF>23
SYSTem:COMMunicate:GPIB:ECHO <ON|OFF>2 NR1 Turn on/off HP-IB mnemanic echo.
SYSTem:COMMunicate:GPIB:HCOPy NR1 Set the address of an HP-IB printer or plotter for hardcopy
:ADDRess <num> output — num must be an integer between 0 and 30.
SYSTem:COMMunicate:GPIB:MMEMory NR1 Set the HP-IB address of an external disk drive — num must
:ADDRess <num> be an integer between 0 and 30.
SYSTem:COMMunicate:GPIB:MMEMory NR1 Set the unit number of an external disk drive.
:UNIT <num>
SYSTem:COMMunicate:GPIB:MMEMory NR1 Set the volume number of an external disk drive.
:VOLume <num>
SYSTem:COMMunicate:GPIB[:SELF] NR1 Set the HP 8711's HP-IB address — num must be an integer
:ADDRess <num>* between 0 and 30.
SYSTem:COMMunicate:SERial:TRANsmit NR1 Set the baud rate for hardcopy output to a device on the serial
:BAUD <num> port — choose from
1200]2400(4800|9600|19200.
SYSTem:COMMunicate:SERial:TRANsmit CHAR Set the handshake for communication to a hardcopy device on
:HANDshake <char> the serial port — choose XON or DTR.
SYSTem:COMMunicate:TTL:USER:FEED:KEY NR1 Enable/disable softkey auto-step function to work with fast

[:STATe] <ON|OFF>2

recall {all models} or with user begin function {option 1C2 only).

1 <freq>, <dur>, and <vol> are optional <num>> parameters.

2 Binary parameters accept the values of 1 {on) and 0 (off} in addition to ON and OFF.

3 For use with IBASIC — this command cannot be executed from an external controller.

4 A delay of 5 seconds is required hefore a command is sent to the new address.

12-29

SCPI Command Summary

SYSTem (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION
SYSTem:DATE <numil>,<num2>,<num3> NRT,NR1, NR1 | Set the year (numl], month (num2) and day (num3] of the
real time clock.
SYSTem:ERRor?! query only | Query the error queue — returns the error number and
NRT,STRING | message.
SYSTem:KEY :MASK? query only | Query the mask (shift, ctrl, alt] associated with a keypress on
NR1 an external keyboard.

SYSTem:KEY:QUEue:CLEar

command only

Clears the key queue.

SYSTem:KEY:QUEue:COUNt? query only | Query the number of key codes in the queue.
NR1

SYSTem:KEY:QUEue:MAXimum? query only | Query the size of the key queue {the maximum number of key
NR1 codes it can hold).

SYSTem:KEY:QUEue[:STATe] <ON|OFF>2 NR1 Turn onfoff the key queue.

SYSTem:KEY: TYPE? query only | Query the type of key that was pressed — returns NONE,
CHAR RPG, KEY {front panel keyl or ASC [external keyboard).

SYSTem:KEY:USER

command only

Sets the User Request bit of the Standard Event Status Register,

SYSTem:KEY[:VALuel]?

query only
NR1

Query the key code value for the last key pressed — RPG
type returns the knob count, positive for clockwise rotation,
KEY type returns the front panel keycode,3 and ASC type
returns the ASCIl code number.

SYSTem:PRESet

command only

Perform a system preset — this is the same as the front panel

(PRESET) key.

SYSTem:SET <block>

command only

Send a learn string (obtained using *LRN7?] to the analyzer —
this command is included in the learn string.

SYSTem:SET:LRN? [<USER>]* BLOCK Query or set the instrument state.

SYSTem:SET:LRNLong? |:<USER>:|4 BLOCK Query or set the instrument state, data, and calibration. Similar
to save/recall.

SYSTem: TIME <numi>,<num2>,<num3> NRT,NR1, NRT | Set the hour {num1), minute [num?2| and second {num3) of

the real time clock.

1 For more information on errors, refer to Chapter 14, “SCPI Error Messages.”

2 Binary parameters accept the values of 1 {on) and 0 (off) in addition to ON and OFF.

3 A list of the analyzer's front panel keycodes is provided in Chapter 8.

4 Refer to "Measurement Setup and Control” in Chapter 7 of the User’s Guide for more information on using this command.

12-30

SCPI Command Summary

SYSTem (continued) (continued)

SUBSYSTEM COMMANDS FORM DESCRIPTION

SYSTem:VERSion? query only | Query the SCPI version of the analyzer. See *IDN? to query

NR2 the firmware revision.
TEST
SUBSYSTEM COMMANDS FORM DESCRIPTION
TEST:RESult? query only | Query the result of the selected adjustment or self-test — the
CHAR response will be NULL | PASS |FAIL.

TEST:SELect <num> NR1 Select the adjustment or self-test to execute.

TEST:STATe <char> CHAR Select the state of the active adjustment or self-test — choose
from RUN | CONTinue | STOP for the command. Query
returns NULL | RUN | PAUS | DONE.

TEST:VALue <num> NR1 Set or query a value for an adjustment or self-test.

TRACe
SUBSYSTEM COMMANDS FORM DESCRIPTION
TRACe[:DATA]? <char> query only | Query trace data — choose from

BLOCK or NR3!

CH<1|2>FDATA formatted data,

CH<1|2>FMEM formatted memory,

CH<1|2>SDATA unformatted data,

CH<1|2>SMEM unformatted memory,
CH<1|2><A|B|R>FWD raw data, or
CH<1|2>SCORR<1|2|3> correction data. Note: See
Chapter 6, “Trace Data Transfers,” for data array details.

TRACe[:DATA] <char>,<data>

command only

Input trace data — choose from the above list of arrays. The
data can be either BLOCK or NR3 type.1 See Chapter 6 for
more information.

TRACe[:DATA] <charil>,<char2>

command only

Move data from one internal array to another — charl is
the target array (CH<1|2>SMEM) while char?2 is the
source array (CH<1|2>SDATA|. Note that the source and
target arrays must be from the same measurement channel.

1 The parameter type of the data is determined by the format selected — FORMat REAL uses BLOCK data, FORMat ASCii uses NR3 data separated by commas.

12-31

SCPI Command Summary

TRIGger
SUBSYSTEM COMMANDS FORM DESCRIPTION
TRIGger [:SEQuence] : SOURce <char> CHAR Set the source for the sweep trigger signal — choose

IMMediate or EXTernal (used in conjunction with
SENSe:SWEep:TRIGger: SOURcel.

12-32

13

SCPI Conformance
Information

SCPI Conformance Information

The HP 8711B/12B/13B/14B RF Network Analyzers conform to the
1994.0 version of SCPIL

13-2

SCPI Standard Commands

The analyzer implements the following IEEE 488.2 standard commands:

*CLS
*ESE
*ESE?
*ESR?
*IDN?
*LRN?
*0PC
*0PC?
*0PT?
*PCB
*PSC
*RST
*SRE
*SRE?
*STB?
*TRG
*TST?
*WAT

The analyzer implements the following SCPI 1994.0 standard commands:

ABORt
CALCulate[1]2]

:DATA?

&3CALCulate[1]2] :GDAPerture:APERture
&9CALCulate[1]2] :GDAPerture:SPAN

CALCulate[112]:
:FORMat?
CALCulate[112]:
:LIMit:STATe?
:MATH[:EXPRession]
:MATH[:EXPRession]?

CALCulate[1]2]

CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]

FORMat

LIMit:STATe

CALibration:ZERO:AUTO
CALibration:ZER0:AUTO?

DISPlay:MENU:KEY[1]2]| ... 7]
DISPlay:MENU[1]2]:KEY[1]2] ... 717

&5 indicates HP 8712B/14B only

13-3

SCPI Conformance Information
SCPI Standard Commands

DISPlay:WINDow[112]10]:GEOMetry:LLEFT?
DISPlay:WINDow[1]2]10] :GEOMetry:SIZE?
DISPlay:WINDow[1]2]10] :GEOMetry:URIGHT?
DISPlay:WINDow[1|2110] :GRAPhics:CLEar
DISPlay:WINDow[1|2]10]:GRAPhics:COLor
DISPlay:WINDow[1|2]10]:GRAPhics:COLor?
DISPlay:WINDow([1]2]10] :GRAPhics[:DRAW]
DISPlay:WINDow[112]10]:GRAPhics:LABel
DISPlay:WINDow([1]2]10] :GRAPhics : MOVE
DISPlay:WINDow[1]2]10] :GRAPhics:MOVE?
DISPlay:WINDow[112]10]:GRAPhics:STATe?
DISPlay:WINDow[1|2]:TRACe:GRATicule:GRID[:STATe]
DISPlay:WINDow[1|2]:TRACe:GRATicule:GRID[:STATe]?
DISPlay:WINDow[1]2]:TRACe[1]2][:STATe]
DISPlay:WINDow[1|2]:TRACe[1]2][:STATe]?
DISPlay:WINDow[1|2]:TRACe:Y[:SCALe] : AUTO
DISPlay:WINDow[1|2]:TRACe:Y[:SCALe] :PDIVision
DISPlay:WINDow[1|2]:TRACe:Y[:SCALe] :PDIVision?
DISPlay:WINDow[1|2]:TRACe:Y[:SCALe] :RLEVel
DISPlay:WINDow[1|2]:TRACe:Y[:SCALe] :RLEVel?
DISPlay:WINDow[1|2]:TRACe:Y[:SCALe] :RPOSition
DISPlay:WINDow[1|2]:TRACe:Y[:SCALe] :RP0Sition?

FORMat : BORDer
FORMat :BORDer?
FORMat [:DATA]
FORMat [:DATA]?

INITiate[1]2] :CONTinuous
INITiate[1]2] :CONTinuous?
INITiate[1]2] [:IMMediatel

MMEMory :CDIRectory
MMEMory :CDIRectory?
MMEMory : COPY
MMEMory :DELete
MMEMory:INITialize
MMEMory :LOAD:STATe
MMEMory : MOVE
MMEMory :MSIS
MMEMory :MSIS?
MMEMory :STORe:STATe

13-4

MMEMory :
MMEMory :
MMEMory :

OUTPut[:
OUTPut[:

PROGram:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:
PROGram[:

SENSe[1]2]

STORe:TRACe
TRANsfer :BDAT
TRANsfer[:HFS]

STATe]
STATe]?

CATalog”

SELected]
SELected]

SELected]

SELected]
SELected]

SELected]:
:NAME?
SELected]:
:NUMBer?
:STATe
SELected]:
:STRing
:STRing?
‘WAIT
WAIT?

SELected]

SELected]
SELected]

SELected]
SELected]
SELected]
SELected]

:AVERage:

SCPI Conformance Information
SCPI Standard Commands

:DEFine

:DEFine?
SELected]:
:DELete[:SELected]
SELected]:
:MALLocate

:MALLocate?

DELete:ALL

EXECute

NAME

NUMBer

STATe?

COUNt

SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]

:AVERage :COUNt?
:AVERage[:STATe]
:AVERage [:STATe]?
:BWIDth[:RESolution]
:BWIDth[:RESolution]?

SENSe[1]2]:
:CORRection
SENSe[1]2]:
:CORRection
:CORRection

SENSe[1]2]

SENSe[1]2]
SENSe[1]2]

CORRection

CORRection

:COLLect [:ACQuirel]
:COLLect :METHod
:COLLect:SAVE
:CSET[:SELect]
:CSET[:SELect]?

»SENSe[112] :CORRection:EDELay:TIME

£9SENSe[1]2] :CORRection:IMPedance: INPut:MAGNitude
£5SENSe[1]2] :CORRection:0FFSet :PHASe

»SENSe[112] :CORRection:RVELocity:COAX

SENSe[1|2] :CORRection[:STATe]

& indicates HP 8712B/14B only 13-5

SENSe[1]2]

SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]
SENSe[1]2]

SCPI Conformance Information
SCPI Standard Commands

:CORRection[:STATe]?
SENSe[1]2]:

DETector:SHAPe

:FREQuency:
:FREQuency:
:FREQuency:
:FREQuency:
:FREQuency:
:FREQuency:
:FREQuency:
:FREQuency:
:FUNCtion
:FUNCtion?

CENTer
CENTer?
SPAN
SPANT
STARt
STARt?
STOP
STOP?

SENSe:R0SCillator:S0URce
SENSe:R0SCillator:S0URce?
SENSe[1]2] :SWEep :POINts
SENSe[1]2] :SWEep :POINts?
SENSe[1]2] :SWEep: TIME
SENSe[1]2] :SWEep: TIME?
SENSe[1]2] : SWEep : TIME: AUTO
SENSe[1]2] :SWEep: TIME: AUT0?

SO0URce[1|2] :POWer[:LEVel] [:IMMediate] [:AMPLitude]
SO0URce[1|2] :POWer[:LEVel] [:IMMediate] [:AMPLitude]?
SO0URce[1]2] :POWer :RANGe

SO0URce[1]2] :POWer:STARt

SO0URce[1|2] :POWer:STOP

STATus:0PERation:CONDition?
STATus:0PERation:ENABle
STATus:0PERation:ENABle?

STATus :0PERation[:EVENt]?
STATus:0PERation:NTRansition
STATus:0PERation:NTRansition?
STATus:0PERation:PTRansition
STATus:0PERation:PTRansition?
STATus :PRESet
STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABle
STATus:QUEStionable:ENABle?
STATus :QUEStionable[:EVENt]?
STATus:QUEStionable:NTRansition
STATus:QUEStionable:NTRansition?

13-6

SCPI Conformance Information
SCPI Standard Commands

STATus:QUEStionable:PTRansition
STATus:QUEStionable:PTRansition?

SYSTem:BEEPer[:IMMediate]?
SYSTem:BEEPer: VOLume
SYSTem:BEEPer:VOLume?
SYSTem:COMMunicate:GPIB[:SELF] : ADDRess
SYSTem:COMMunicate:GPIB[:SELF] : ADDRess?
SYSTem:COMMunicate:SERial:TRANsmit :BAUD
SYSTem:COMMunicate:SERial:TRANsmit :BAUD?
SYSTem:DATE

SYSTem:DATE?

SYSTem:ERRor?

SYSTem:KEY[:VALue]?

SYSTem:PRESet

SYSTem:SET

SYSTem:SET:LRN?

SYSTem:TIME

SYSTem:TIME?

SYSTem:VERSion?

TRACe[:DATA]
TRACe [:DATA]?

TRIGger[:SEQuence] :SOURce
TRIGger[:SEQuence] :SOURce?

13-7

Instrument Specific Commands

The following are instrument specific commands implemented by the
HP 8711B/12B/13B/14B RF Network Analyzers which are not part of the
present SCPI 1992.0 definition.

CALCulate[1|2]:LIMit:DISPlay
CALCulate[1|2]:LIMit:DISPlay?

CALCulate[1]2] :LIMit:MARKer :FLATness :MAXimum
CALCulate[1]2] :LIMit:MARKer :FLATness :MINimum
CALCulate[1]2] :LIMit:MARKer :FLATness[:STATe]
CALCulate[1]2] :LIMit:MARKer:STATistic :MEAN:MAXimum
CALCulate[1]2] :LIMit:MARKer:STATistic :MEAN:MINimum
CALCulate[112] :LIMit:MARKer:STATistic :MEAN[:STATe]
CALCulate[1]2] :LIMit:MARKer:STATistic:PEAK:MAXimum
CALCulate[1]2] :LIMit:MARKer:STATistic:PEAK:MINimum
CALCulate[112] :LIMit:MARKer:STATistic:PEAK[:STATe]

CALCulate[112] :LIMit:SEGMent[1]2] ... 12] :AMPLitude:STARt
CALCulate[1|2] :LIMit:SEGMent[1]2] ... 12] :AMPLitude:STARt?
CALCulate[1]2] :LIMit:SEGMent[1]2] ... 12] :AMPLitude:STOP
CALCulate[1]|2] :LIMit:SEGMent[1]2] ... 12] :AMPLitude:STOP?
CALCulate[1]2] :LIMit:SEGMent : AOFF

CALCulate[1]2] :LIMit:SEGMent[112] ... 12] :FREQuency:STARt
CALCulate[1]2] :LIMit:SEGMent[1]2] ... 12] :FREQuency:STARt?
CALCulate[1]2] :LIMit:SEGMent[1]2] ... 12] :FREQuency:STOP
CALCulate[1]2] :LIMit:SEGMent[112] ... 12] :FREQuency:STOP?
CALCulate[1]2] :LIMit:SEGMent[1]2] ... 12] :POWer:STOP
CALCulate[112] :LIMit:SEGMent[1]2] ... 12] :POWer:STOP?
CALCulate[1]2] :LIMit:SEGMent[1|2] ... 12] :STATe
CALCulate[1]2] :LIMit:SEGMent[1]2] ... 12]:STATe?
CALCulate[1]|2] :LIMit:SEGMent[1]2] ... 12]:TYPE
CALCulate[1]2] :LIMit:SEGMent[1]2] ... 12]:TYPE?

CALCulate[1]2] :MARKer:AOFF
CALCulate[1]2] :MARKer:BWIDth
CALCulate[1]2] :MARKer:BWIDth?
CALCulate[1]2] :MARKer:FUNCtion:RESult?
CALCulate[1]2] :MARKer:FUNCtion[:SELect]
CALCulate[1]2] :MARKer:FUNCtion[:SELect]?
CALCulate[1]2] :MARKer :FUNCtion:TRACking
CALCulate[1]|2] :MARKer:FUNCtion:TRACking?

13-8

CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]

SCPI Conformance Information

Instrument Specific Commands

€5CALCulate[1]2] :MARKer[1]2| ... 8] :GDELay?
:MARKer[112] ... 8] :MAXimum
:MARKer[112]| ... 8] :MAXimum:LEFT
:MARKer[112] ... 8] :MAXimum:RIGHt
:MARKer[112] ... 8] :MINimum
:MARKer[112]| ... 8] :MINimum:LEFT
:MARKer[112] ... 8] :MINimum:RIGHt
:MARKer :MODE
:MARKer :MODE?
:MARKer:NOTCh
:MARKer[1|2]| ... 8] :POINt
:MARKer[112] ... 8] :POINt?

CALCulate[1]2]
CALCulate[1]2]
CALCulate[1]2]

:MARKer:REFerence:X?
:MARKer:REFerence:Y?

CALCulate[112] :MARKer[112]| ... 8] [:STATe]
CALCulate[112] :MARKer[112]| ... 8] [:STATe]?
CALCulate[112] :MARKer[112]| ... 8] :TARGet
CALCulate[1]2] :MARKer[112]| ... 8] :TARGet?
CALCulate[1]2] :MARKer[112] ... 8]:X
CALCulate[1]2] :MARKer[11]2] ... 8]:X7
CALCulate[1]2] :MARKer[112]| ... 8] :X:ABS
CALCulate[1]2] :MARKer[1]2] ... 8]:Y7
CALCulate[112] :MARKer[112] ... 8]:Y:INDuctance?
CALCulate[1]2] :MARKer[112] ... 8] :Y:MAGNitude?
& CALCulate[1]2] :MARKer[112]| ... 8] :Y:PHASe?
&CALCulate[1]2] :MARKer[1]2]| ... 8]:Y:REACtance?
&CALCulate[1]|2] :MARKer([1]2] ... 8]:Y:RESistance?
CONFigure

CONFigure?

DIAGnostic:CCONstants

DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:
DIAGnostic:

CCONstants:LOAD

CCONstants:STORe:DISK

:INSTalled?

CCONstants:STORe:EEPRom

DITHer
DITHer?
SNUMber
SNUMber?
SPUR:AV0id
SPUR:AV0id?

13-9

SCPI Conformance Information
Instrument Specific Commands

DISPlay:ANNotation:CHANnel[1|2] :USER:LABel[:DATA]
DISPlay:ANNotation:CHANnel[1]|2] :USER[:STATe]
DISPlay:ANNotation:CLOCk:DATE:FORMat
DISPlay:ANNotation:CLOCk:DATE:FORMat?
DISPlay:ANNotation:CLOCk:DATE:MODE
DISPlay:ANNotation:CLOCk:DATE:MODE?
DISPlay:ANNotation:CLOCk:MODE
DISPlay:ANNotation:CLOCk:MODE?
DISPlay:ANNotation:CLOCk:SEConds[:STATe]
DISPlay:ANNotation:CLOCk:SEConds[:STATe]?
DISPlay:ANNotation:FREQuency[1]2]:MODE
DISPlay:ANNotation:FREQuency[1|2]:MODE?

DISPlay:ANNotation:FREQuency:RESolution
DISPlay:ANNotation:FREQuency:RESolution?
DISPlay:ANNotation:FREQuency[1]2]:USER:LABel[:DATA]
DISPlay:ANNotation:FREQuency[1]2]:USER:STARt
DISPlay:ANNotation:FREQuency[1]2]:USER[:STATe]
DISPlay:ANNotation:FREQuency[1]|2]:USER:STOP
DISPlay:ANNotation:FREQuency[1|2]:USER:SUFFIX
DISPlay:ANNotation:MARKer[1|2][:STATe]
DISPlay:ANNotation:MARKer[1|2] [:STATe]?
DISPlay:ANNotation:MESSage:AOFF
DISPlay:ANNotation:MESSage:CLEar
DISPlay:ANNotation:MESSage[:DATA]?
DISPlay:ANNotation:MESSage:STATe
DISPlay:ANNotation:MESSage:STATe?
DISPlay:ANNotation:TITLe[1]2] :DATA
DISPlay:ANNotation:TITLe[1|2] :DATA?
DISPlay:ANNotation:TITLe[:STATe]
DISPlay:ANNotation:TITLe[:STATe]?
DISPlay:ANNotation:YAXis:MODE
DISPlay:ANNotation:YAXis:MODE?
DISPlay:ANNotation:YAXis[:STATe]
DISPlay:ANNotation:YAXis[:STATe]?
DISPlay:FORMat

DISPlay:FORMat?
DISPlay:MENU:RECall:FAST[:STATe] * DISPlay:PROGraml[:MODE]
DISPlay:PROGram[:MODE]?
DISPlay:WINDow:GRAPhics:BUFFer[:STATe]
DISPlay:WINDow:GRAPhics:BUFFer[:STATe]?

13-10

DISPlay:WINDow[1]2]10]:
DISPlay:WINDow[1]2]10]:
DISPlay:WINDow[1]2]10]:
DISPlay:WINDow[1]2]10]:

HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:

HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:
HCOPy:

INPut:
INPut:

ABORt
DEVic
DEVic
DEVic
DEVic

DEVice[1]2] :LANGuage

DEVic
DEVic
DEVic
DEVic

e[1]2] :COLor
e[1]2] :COLor?
e:LANGuage
e:LANGuage?

e :MODE
e:MODE?
e:PORT
e:PORT?

DEVice:RESolution
DEVice:RESolution?
HCOPy[:IMMediate]

ITEM:ANNotation:STATe
ITEM:ANNotation:STATe?
ITEM[112] :FFEed:STATe
ITEM[112] :FFEed:STATe?
GRATicule:STATe

GRATicule:STATe?

ITEM:
ITEM:
ITEM:
ITEM:
ITEM:
ITEM:
ITEM:
ITEM:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:

GAIN:
GAIN:

MARKer:STATe
MARKer:STATe?
TITLe:STATe
TITLe:STATe?
TRACe:STATe
TRACe:STATe?
MARGin:LEFT
MARGin:LEFT?
MARGin:TOP
MARGin:TOP?
ORIentation
ORIentation?
WIDTh

WIDTh?

AUTO
SETTing

GRAPhics
GRAPhics
GRAPhics
GRAPhics

SCPI Confarmance Information
Instrument Specific Commands

:CIRCle
:LABel:FONT
:LABel:FONT?
:RECTangle

13-11

SCPI Conformance Information

Instrument Specific Commands

MMEMory :
MMEMory :
MMEMory :
MMEMory :
MMEMory :
MMEMory :
MMEMory :

MDIRectory
RDIRectory

STORe:
STORe:
STORe:
STORe:
STORe:
STORe:

STATe:
STATe:
STATe:
STATe:
STATe:
STATe:

CORRection
CORRection?
ISTate
ISTate?
TRACe
TRACe?

MMEMory :
MMEMory :
MMEMory :

TRANsfer :BDAT
TRANsfer[:HFS]

POWer\[1|2] :MODE

SENSe[1]2]
SENSe[1]2]

SENSe[1]2]

SENSe[1]2]
SENSe[1]2]

CORRection

CORRection

CORRection

:AVERage:CLEar
:CORRection:
SENSe[1]2]:

CAPacitance:CONNector (Option 100 only)

:CAPacitance:CONNector? (Option 100 only)
:CORRection:
SENSe[1]2]:
:CORRection:
:CORRection:
SENSe[1]2]:

COLLect:ABORt

:COLLect:CKIT[:SELect]

COLLect:CKIT[:SELect]?
COLLect:ISTate[:AUTO]

:COLLect:ISTate[:AUTO]?

E5SENSe[1]2] :CORRection:EXTension[:STATe]
£9SENSe[1]2] :CORRection:EXTension:REFLection[:TIME]
£9SENSe[1]2] :CORRection:EXTension:TRANsmission[:TIME]

SENSe[1]2]
SENSe[1]2]

SENSe[1]2]

SENSe[1]2]
SENSe[1]2]
only)

SENSe[1]2]

SENSe[1]2]
SENSe[1]2]
SENSe[1]2]

:CORRection:
:CORRection:
SENSe[1]2]:

CORRection

CORRection

:CORRection:
SENSe[1]2]:

CORRection

SENSe:COUPle
SENSe:COUPle?
SENSe[1|2] :DETector[:FUNCtion]
SENSe[1|2] :DETector[:FUNCtion]?

LENGth:COAX (Option 100 only)
LENGth:C0AX? (Option 100 only)

:LENGth:CONNector (Option 100 only)
:CORRection:
SENSe[112]:

LENGth:CONNector? (Option 100 only)

:L0SS:COAX (Option 100 only)
:CORRection:
:CORRection:

L0SS:COAX? (Option 100 only)
MODel:CONNector [:IMMediate] (Option 100

PEAK:COAX (Option 100 only)

:PEAK:COAX? (Option 100 only)
:CORRection:
:CORRection:
:CORRection:

RVELocity[:IMMediate] (Option 100 only)
THReshold:COAX (Option 100 only)
THReshold:COAX? (Option 100 only)

13-12

&5 indicates HP 8712B/14B only

SENSe:
SENSe
SENSe:
SENSe:
SENSe
SENSe:
SENSe
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe:
SENSe
SENSe:
SENSe:

SENSe[1]2] :STATe

SCPI Confarmance Information
Instrument Specific Commands

DISTance:STARt (Option 100 only)

:DISTance:STARt? (Option 100 only)

DISTance:STOP (Option 100 only)
DISTance:STOP? (Option 100 only)

:DISTance:UNITs (Option 100 only)

DISTance:UNITs? (Option 100 only)

:FREQuency:

FREQuency:
FREQuency:
FREQuency:
FREQuency:
FREQuency:

MODE (Option 100 only)

MODE? (Option 100 only)

SPAN :MAXimum? (Option 100 only)
SPAN :MAXimum (Option 100 only)
ZSTop (Option 100 only)

ZSTop? (Option 100 only)

FUNCtion:SRL:IMPedance (Option 100 only)
FUNCtion:SRL:IMPedance? (Option 100 only)

:FUNCtion:SRL:MODE (Option 100 only)

FUNCtion:SRL:MODE? (Option 100 only)
FUNCtion:SRL:SCAN[:IMMediate] (Option 100 only)

SENSe[112] :STATe?
SENSe:SWEep:TRIGger:S0URce
SENSe:SWEep:TRIGger:SO0URce?
SENSe:WINDow[:TYPE] (Option 100 only)
SENSe:WINDow[:TYPE]? (Option 100 only)

STATus:
STATus:
STATus:

STATus

STATus:
STATus:
STATus:
STATus:
STATus:
STATus:

STATus

STATus:

STATus

STATus:
STATus:
STATus:
STATus:

DEVice:CONDition?
DEVice:ENABle
DEVice:ENABle?

:DEVice[:EVENt]?

DEVice:NTRansition
DEVice:NTRansition?
DEVice:PTRansition
DEVice:PTRansition?
OPERation:AVERaging:CONDition?
OPERation:AVERaging:ENABle

:0PERation:AVERaging:ENABle?

OPERation:AVERaging[:EVENt]?

:0PERation:AVERaging:NTRansition

OPERation:AVERaging:NTRansition?
OPERation:AVERaging:PTRansition
OPERation:AVERaging:PTRansition?
OPERation:MEASuring:CONDition?

13-13

SCPI Conformance Information

Instrument Specific Commands

STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:
STATus:

SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:
SYSTem:

OPERation:MEASuring:ENABle
OPERation:MEASuring:ENABle?
OPERation:MEASuring[:EVENt]?
OPERation:MEASuring:NTRansition
OPERation:MEASuring:NTRansition?
OPERation:MEASuring:PTRansition
OPERation:MEASuring:PTRansition?
QUEStionable:LIMit:CONDition?
QUEStionable:LIMit:ENABle
QUEStionable:LIMit:ENABle?
QUEStionable:LIMit[:EVENt]?
QUEStionable:LIMit:NTRansition
QUEStionable:LIMit:NTRansition?
QUEStionable:LIMit:PTRansition
QUEStionable:LIMit:PTRansition?

COMMunicate:GPIB:CONTroller[:STATe]
COMMunicate:GPIB:CONTroller[:STATe]?
COMMunicate:GPIB:ECHO
COMMunicate:GPIB:ECHO?
COMMunicate:GPIB:HCOPy:ADDRess
COMMunicate:GPIB:HCOPy:ADDRess?
COMMunicate:GPIB:MMEMory :ADDRess

:COMMunicate:GPIB:MMEMory :ADDRess?

COMMunicate:GPIB:MMEMory:UNIT
COMMunicate:GPIB:MMEMory :UNIT?
COMMunicate:GPIB:MMEMory:V0Lume
COMMunicate:GPIB:MMEMory:VOLume?
COMMunicate:SERial :TRANsmit :HANDshake
COMMunicate:SERial :TRANsmit :HANDshake?
COMMunicate:TTL:USER:FEED:KEY[:STATe]

:COMMunicate:TTL:USER:FEED:KEY[:STATe]?

KEY :MASK?

KEY :QUEue:CLEar
KEY :QUEue:COUNt?
KEY :QUEue :MAXimum?
KEY :QUEue[:STATe]
KEY:QUEue[:STATe]?
KEY:TYPE?

KEY :USER

SET :LRNLong

13-14

TEST:
TEST:
TEST:
TEST:
TEST:
TEST:
TEST:

RESult?
SELect
SELect?
STATe
STATe?
VALue
VALue?

SCPI Conformance Information

13-15

SCPI Conformance Information

14

SCPI Error Messages

SCPI Error Messages

This chapter contains the same error message information that can be found
in the SCPI 1994 Volume 2: Command Reference. There are four sections in
this chapter:

e Command Errors
e Execution Errors
e Device-Specific Errors

e Query Errors

NOTE

Your analyzer does not use all of the error messages listed in this chapter.

14-2

Command Errors

An error/event number in the range —199 to —100 indicates that an

[EEE 488.2 syntax error has been detected by the instrument’s parser. The
occurrence of any error in this class shall cause the command error bit (bit 5)
in the event status register (IEEE 488.2, section 11.5.1) to be set. One of the
following events has occurred:

e An [EEE 488.2 syntax error has been detected by the parser. That is, a
controller-to-device message was received which is in violation of the
IEEE 488.2 standard. Possible violations include a data element which
violates the device listening formats or whose type is unacceptable to the
device.

e An unrecognized header was received. Unrecognized headers include
incorrect device-specific headers and incorrect or unimplemented
IEEE 488.2 common commands.

e A Group Execute Trigger (GET) was entered into the input buffer inside of
an IEEE 488.2 program message.

Events that generate command errors shall not generate execution errors,
device-specific errors, or query errors; see the other error definitions in this
chapter.

14-3

SCPI Error Messages
Command Errors

Table 14-1. SCPI Command Errors

Error Number

Error Description

—100 Command error — This is the generic syntax error for devices that cannot detect more specific errors. This code
indicates only that a Command Error has occurred.

—101 Invalid character — A syntactic element contains a character which is invalid for that type; for example, a header
containing an ampersand, SETUP&. This error might be used in place of errors —114, —121, —141, and perhaps
some others.

—102 Syntax error — An unrecognized command or data type was encountered; for example, a string was received when
the device does not accept strings.

—103 Invalid separator — The parser was expecting a separator and encountered an illegal character; for example, the
semicolon was omitted after a program message unit, *EMC 1:CH1:VOLTS 5.

—104 Data type error — The parser recognized a data element different than one allowed; for example, numeric or string
data was expected but block data was encountered.

—105 GET not allowed — A Group Execute Trigger was received within a program message.

—108 Parameter not allowed — More parameters were received than expected for the header; for example, the *EMC
common command only accepts one parameter, so receiving *EMC 0, 1 is not allowed.

—109 Missing parameter — Fewer parameters were received than required for the header; for example, the *EMC
common command requires one parameter, so receiving *EMC is not allowed.

—110 Command header error — An error was detected in the header. This error message should be used when the
device cannot detect the more specific errors described for errors —111 through —119.

—1M Header separator error — A character which is not a legal header separator was encountered while parsing the
header; for example, no white space followed the header, thus *GMC"MACRO" is an error.

—112 Program mnemonic too long — The header contains more that twelve characters.

—113 Undefined header — The header is syntactically correct, but it is undefined for this specific device; for example,
*XYZ is not defined for any device.

—114 Header suffix out of range — The value of a numeric suffix attached to a program mnemonic makes the header
invalid.

—120 Numeric data error — This error, as well as errors —121 through —129, are generated when parsing a data
element which appears to be numeric, including the nondecimal numeric types. This particular error message should
be used if the device cannot detect a more specific error.

—121 Invalid character in number — An invalid character for the data type being parsed was encountered; for example, an
alpha in a decimal numeric or a “9" in octal data.

—123 Exponent too large — The magnitude of the exponent was larger than 32000.

14-4

SCPI Error Messages
Command Errors

Table 14-1. SCPI Command Errors (continued)

Error Number

Error Description

—124 Too many digits — The mantissa of a decimal numeric data element contained more than 255 digits excluding
leading zeros.

—128 Numeric data not allowed — A legal numeric data element was received, but the device does not accept one in
this position for the header.

—130 Suffix error — This error, as well as errors —131 through —139, are generated when parsing a suffix. This
particular error message should be used if the device cannot detect a more specific error.

—131 Invalid suffix — The suffix does not follow the correct syntax, or the suffix is inappropriate for this device.

—134 Suffix too long — The suffix contained more than 12 characters.

—138 Suffix not allowed — A suffix was encountered after a numeric element which does not allow suffixes.

—140 Character data error — This error, as well as errors —141 through —149, are generated when parsing a character
data element. This particular error message should be used if the device cannot detect a more specific error.

—141 Invalid character data — Either the character data element contains an invalid character or the particular element
received is not valid for the header.

—144 Character data too long — The character data element contains more than twelve characters.

—148 Character data not allowed — A legal character data element was encountered where prohibited by the device.

—150 String data error — This error, as well as errors — 151 through —159, are generated when parsing a string data
element. This particular error message should be used if the device cannot detect a more specific error.

—151 Invalid string data — A string data element was expected, but was invalid for some reason. For example, an END
message was received before the terminal quote character.

—158 String data not allowed — A string data element was encountered but was not allowed by the device at this point
in parsing.

—160 Block data error — This error, as well as errors — 1671 through — 169, are generated when parsing a block data
element. This particular error message should be used if the device cannot detect a more specific error.

—161 Invalid block data — A block data element was expected, but was invalid for some reason. For example, an END
message was received before the length was satisfied.

—168 Block data not allowed — A legal block data element was encountered but was not allowed by the device at this
point in parsing.

—170 Expression error — This error, as well as errors —171 through —179, are generated when parsing an expression

data element. This particular error message should be used if the device cannot detect a more specific error.

14-5

SCPI Error Messages
Command Errors

Table 14-1. SCPI Command Errors (continued)

Error Number

Error Description

—171 Invalid expression — The expression data element was invalid [for example, unmatched parentheses or an illegal
character).

—178 Expression data not allowed — A legal expression data was encountered but was not allowed by the device at this
point in parsing.

—180 Macro error — This error, as well as errors —181 through —189, are generated when defining or executing a
macro. This particular error message should be used if the device cannot detect a more specific error.

—181 Invalid outside macro definition — Indicates that a macro parameter placeholder [$<<number) was encountered
outside of a macro definition.

—183 Invalid inside macro definition — Indicates that the program message unit sequence, sent with a *DDT or *DMC
command, is syntactically invalid.

—184 Macro parameter error — Indicates that a command inside the macro definition had the wrong number or type of

parameters.

14-6

Execution Errors

An error/event number in the range —299 to —200 indicates that an error has
been detected by the instrument’s execution control block. The occurrence of
any error in this class shall cause the execution error bit (bit 4) in the event
status register to be set. One of the following events has occurred:

e A program data element following a header was evaluated by the device
as outside of its legal input range or is otherwise inconsistent with the
device’s capabilities.

e A valid program message could not be properly executed due to some
device condition.

Execution errors shall be reported by the device after rounding and
expression evaluation operations have taken place. Rounding a numeric data
element, for example, shall not be reported as an execution error. Events that
generate execution errors shall not generate Command Errors, device-specific
errors, or Query Errors; see the other error definitions in this section.

14-7

SCPI Error Messages
Execution Errors

Table 14-2. SCPI Execution Errors

Error Number

Error Description

—200 Execution error — This is the generic syntax error for devices that cannot detect more specific errors. This code
indicates only that an Execution Error has occurred.

—201 Invalid while in local — Indicates that a command is not executable while the device is in local due to a hard local
control; for example, a device with a rotary switch receives a message which would change the switches state, but
the device is in local so the message can not be executed.

—202 Settings lost due to rtl — Indicates that a setting associated with a hard local control was lost when the device
changed to LOCS from REMS or to LWLS from RWLS.

—203 Command protected — Indicates that a legal password-protected program command or query could not be executed
because the command was disabled.

=210 Trigger error

=211 Trigger ignored — Indicates that a GET, *TRG, or triggering signal was received and recognized by the device but
was ignored because of device timing considerations; for example, the device was not ready to respond.1

—212 Arm ignored — Indicates that an arming signal was received and recognized by the device but was ignored.

—213 Init ignored — Indicates that a request for a measurement initiation was ignored as another measurement was
already in progress.

—214 Trigger deadlock — Indicates that the trigger source for the initiation of a measurement is set to GET and
subsequent measurement query is received. The measurement cannot be started until a GET is received, but the
GET would cause an INTERRUPTED error.

—215s Arm deadlock — Indicates that the arm source for the initiation of a measurement is set to GET and subsequent
measurement query is received. The measurement cannot be started until @ GET is received, but the GET would
cause an INTERRUPTED error.

—220 Parameter error — Indicates that a program data element related error occurred. This error message should be
used when the device cannot detect the mare specific errors —221 through —229.

—221 Settings conflict — Indicates that a legal program data element was parsed but could not be executed due to the
current device state.

—222 Data out of range — Indicates that a legal program data element was parsed but could not be executed because
the interpreted value was outside the legal range as defined by the device.

—223 Too much data — Indicates that a legal program data element of block, expression, or string type was received
that contained more data than the device could handle due to memory or related device-specific requirements.

—224 lllegal parameter value — Used where an exact value, from a list of possible values, was expected.

1 A DTO device always ignores GET and treats *TRG as a Command Error.

14-8

SCPI Error Messages
Execution Errors

Table 14-2. SCPI Execution Errors (continued)

Error Number

Error Description

—225 Out of memory — The device has insufficient memory to perform the requested operation.

—226 Lists not same length — Attempted to use LIST structure having individual LIST's of unequal lengths.

—230 Data corrupt or stale — Possibly invalid data; new reading started but not completed since last access.

—231 Data questionable — Indicates that measurement accuracy is suspect.

—232 Invalid format — Indicates that a legal program data element was parsed but could not be executed because the
data format or structure is inappropriate, such as when loading memory tables or when sending a SYSTem: SET
parameter from an unknown instrument.

—233 Invalid version — Indicates that a legal program data element was parsed but could not be executed because the
version of the data is incorrect to the device. This particular error should be used when file or block data formats
are recognized by the instrument but cannot be executed for reasons of version incompatibility. For example, an
unsupported file version, or an unsupported instrument version.

—240 Hardware error — Indicates that a legal program command or query could not be executed because of a hardware
problem in the device. Definition of what constitutes a hardware problem is completely device-specific. This error
message should be used when the device cannot detect the more specific errors described for errors —241 through
—249.

—241 Hardware missing — Indicates that a legal program command or query could not be executed because of missing
device hardware; for example, an option was not installed. Definition of what constitutes missing hardware is
completely device-specific.

—250 Mass storage error — Indicates that a mass storage error occurred. This error message should be used when the
device cannot detect the more specific errors described for errors —251 through —259.

—251 Missing mass storage — Indicates that a legal program command or query could not be executed because of
missing mass storage; for example, an option that was not installed. Definition of what constitutes missing mass
storage is device-specific.

—252 Missing media — Indicates that a legal program command or query could not be executed because of a missing
media; for example, no disk. The definition of what constitutes missing media is device-specific.

—253 Corrupt media — Indicates that a legal program command or query could not be executed because of corrupt media
for example, bad disk or wrong format. The definition of what constitutes corrupt media is device-specific.

—254 Media full — Indicates that a legal program command or query could not be executed because the media was full;
for example, there is no room on the disk. The definition of what constitutes a full media is device-specific.

—255 Directory full — Indicates that a legal program command or query could not be executed because the media

directory was full. The definition of what constitutes a full media directory is device-specific.

14-9

SCPI Error Messages
Execution Errors

Table 14-2. SCPI Execution Errors (continued)

Error Number

Error Description

—256 File name not found — Indicates that a legal program command or query could not be executed because the file
name on the device media was not found; for example, an attempt was made to read or copy a nonexistent file.
The definition of what constitutes a file not being found is device-specific.

—257 File name error — Indicates that a legal program command or query could not be executed because the file name
on the device media was in error; for example, an attempt was made to copy to a duplicate file name. The
definition of what constitutes a file name error is device-specific.

—258 Media protected — Indicates that a legal program command or query could not be executed because the media
was protected; for example, the write-protect tab on a disk was present. The definition of what constitutes
protected media is device-specific.

—260 Expression error — Indicates that an expression program data element related error occurred. This error message
should be used when the device cannot detect the more specific errors described for errors —261 through —269.

—261 Math error in expression — Indicates that a syntactically legal expression program data element could not be
executed due to a math error; for example, a divide-by-zero was attempted. The definition of math error is
device-specific.

—270 Macro error — Indicates that a macro-related execution error occurred. This error message should be used when
the device cannot detect the more specific errors —271 through —279.

=271 Macro syntax error — Indicates that a syntactically legal macro program data sequence could not be executed due
to a syntax error within the macro definition.

—272 Macro execution error — Indicates that a syntactically legal macro program data sequence could not be executed
due to some error in the macro definition.

—273 lllegal macro label — Indicates that the macro label defined in the *DMC command was a legal string syntax, but
could not be accepted by the device; for example, the label was too long, the same as a common command header,
or contained invalid header syntax.

—274 Macro parameter error — Indicates that the macro definition improperly used a macro parameter placeholder.

—275 Macro definition too long — Indicates that a syntactically legal macro program data sequence could not be executed
because the string or block contents were too long for the device to handle.

—276 Macro recursion error — Indicates that a syntactically legal macro program data sequence could not be executed

because the device found it to be recursive.

14-10

SCPI Error Messages
Execution Errors

Table 14-2. SCPI Execution Errors (continued)

Error Number

Error Description

=277 Macro redefinition not allowed — Indicates that a syntactically legal macro label in the *DMC command could not
be executed because the macro label was already defined.

—278 Macro header not found — Indicates that a syntactically legal macro label in the *GMC? query could not be
executed because the header was not previously defined.

—280 Program error — Indicates that a downloaded program-related execution error occurred. This error message should
be used when the device cannot detect the more specific errors —281 through —289. A downloaded program is
used to add algorithmic capability to a device. The syntax used in the program and the mechanism for
downloading a program is device-specific.

—281 Cannot create program — Indicates that an attempt to create a program was unsuccessful. One reason for failure
might include not enough memory.

—282 lllegal program name — The name used to reference a program was invalid; for example, redefining an existing
program, deleting a nonexistent program, or in general, referencing a nonexistent program.

—283 lllegal variable name — An attempt was made to reference a nonexistent variable in a program.

—284 Program currently running — Certain operations dealing with programs may be illegal while the program is running;
for example, deleting a running program might not be possible.

—285 Program syntax error — Indicates that a syntax error appears in a downloaded program. The syntax used when
parsing the downloaded program is device-specific.

—286 Program runtime error

—290 Memory use error — Indicates that a user request has directly or indirectly caused an error related to memory or
data_handles [this is not the same as “had” memory).

—291 Out of memory

—292 Referenced name does not exist

—293 Referenced name already exists

—294 Incompatible type — Indicates that the type or structure of a memory item is inadequate.

14-11

Device-Specific Errors

An error/event number in the range —399 to —300 or 1 to 32767 indicates
that the instrument has detected an error which is not a command error, a
query error, or an execution error. It indicates that some device operations
did not properly complete, possibly due to an abnormal hardware or firmware
condition. These codes are also used for self-test response errors. The
occurrence of any error in this class should cause the device-specific error bit
(bit 3) in the event status register to be set.

The meaning of positive error codes is device-dependent and may be
enumerated or bit mapped; the error message string for positive error codes
is not defined by SCPI and available to the device designer. Note that the
string is not optional; if the designer does not wish to implement a string

for a particular error, the null string should be sent (for example, 42,”7).

The occurrence of any error in this class should cause the device-specific
error bit (bit 3) in the event status register to be set. Events that generate
device-specific errors shall not generate command errors, execution errors, or
query errors; see the other error definitions in this section.

14-12

SCPI Error Messages
Device-Specific Errors

Table 14-3. SCPI Device-Specific Errors

Error Number

Error Description

—300 Device-specific error — This is the generic device-dependent error for devices that cannot detect more specific errors.
This code indicates only that a Device-Dependent Error has occurred.

=310 System error — Indicates that some error, termed “system error” by the device, has occurred. This code is
device-dependent.

3N Memory error — Indicates that an error was detected in the device’s memory. The scope of this error is
device-dependent.

—312 PUD memory lost — Indicates that the protected user data saved by the *PUD command has been lost.

—313 Calibration memory lost — Indicates that nonvolatile calibration data used by the *CAL? command has been lost.

—314 Save/recall memory lost — Indicates that the nonvolatile data saved by the *SAV? command has been lost.

—315 Configuration memory lost — Indicates that nonvolatile configuration data saved by the device has been lost. The
meaning of this error is device-specific.

—330 Self-test failed

—350 Queue overflow — A specific code entered into the queue in lieu of the code that caused the error. This code
indicates that there is no room in the queue and an error occurred but was not recorded.

—360 Communication error — This is the generic communication error for devices that cannot detect the more specific
errors —361 through —363.

—361 Parity error in program message — Parity bit not correct when data received, for example, on a serial port.

—362 Framing error in program message — A stop bit was not detected when data was received, for example, on a
serial port {for example, a baud rate mismatch).

—363 Input buffer overrun — Software or hardware input buffer on serial port overflows with data caused by improper

or nonexistent pacing.

14-13

Query Errors

An error/event number in the range —499 to —400 indicates that the output
queue control of the instrument has detected a problem with the message
exchange protocol. The occurrence of any error in this class shall cause the
query error bit (bit 2) in the event status register to be set. These errors
correspond to message exchange protocol errors. One of the following is true:

¢ An attempt is being made to read data from the output queue when no
output is either present or pending;

e Data in the output queue has been lost.

Events that generate query errors shall not generate command errors,
execution errors, or device-specific errors; see the other error definitions in
this section.

Table 14-4. SCPI Query Errors

Error Number Error Description

—400 Query error — This is the generic query error for devices that cannot detect more specific errors. This code
indicates only that a Query Error has occurred.

—410 Query INTERRUPTED — Indicates that a condition causing an INTERRUPTED (Query error occurred; for
example, a query followed by DAB or GET before a response was completely sent.

—420 Query UNTERMINATED — Indicates that a condition causing an UNTERMINATED Query error occurred; for
example, the device was addressed to talk and an incomplete program message was received.

—430 Query DEADLOCKED — Indicates that a condition causing a DEADLOCKED (Query error occurred; for example,
both input buffer and output buffer are full and the device cannot continue.

—440 Query UNTERMINATED after indefinite response — Indicates that a query was received in the same program
message after an query requesting an indefinite response was executed.

14-14

Index

Index

3.5 mm, 11-25
75-ohm Formats 6 11-21

4,116
abbreviation

of commands, 10-8
Abort

copy, 11-31
ABORt, 10-4, 12-2
active controller

defined, 1-2

Active Marker Off, 11-15
Add Max Line, 11-18
Add Min Line, 11-18

Add Min Point 6 11-18
address

HP-IB, 1-2
address capability, 1-7
AHI, 1-8
allocate memory, 12-20
All Off 11-16

Alt Sweep on DFF 11-11

AM Delay, 11-6

cal, 11-24
Annotation, 11-33
ANNotation, 12-12, 12-13
Aperture, 11-26

A/R, 116
arrays
correction, example program to up- and down-load, 8-40
data, corrected, 6-25
formatted, 6-27
measurement, 6-21
memory, corrected, 6-25
raw data, 6-22
ASCDATA

Index-2

example program, 8-24
ASCii, 4-7
ASCII encoding, 4-8
ATN, 1-4, 1-10
attention

control line, 1-4
Auto Feed

plotter, 11-32

printer, 11-31
Autoscale | 11-14
Auto Z,11-24
Autozero, 11-25
AUX Input, 11-7
AVERage, 12-21
Average Factor K 11-26
Average on OFF 11-26
averaging, 6-25

averaging status register set, 5-19

(AVG), 11-26

B, 116

Bx 11-7

Band Pass 118

Band Pass Max Span, 11-8
Bandwidth |, 11-17

Baud Rate 11-31
beep, 12-29
Beeper Volume , 11-35

BEGIN), 11-3, 12-8

Begin Frequency , 11-19

Begin Limit 6 11-19
binary encoding, 1-4, 4-8
<block>, 10-14
block data, 4-5
block length

definite, 4-5

indefinite, 4-6
block parameters, 10-14
blocks

definite and indefinite length, 4-5, 4-6, 10-14
boolean parameters, 10-12

B/R, 11-6

Index-3

B&/Rx, 117
brackets

use of in this manual, 1-3, 10-15
branching, 10-5

Broadband External , 117

Broadband Internal , 11-7
buffer
graphics, 7-5
buffering user graphics, 12-14
bus
data, 1-4
bus management commands, 1-6
byte order, 12-15
bytes per point, during data transfer, 6-9
byte swapping, 4-9

C1, 1-8
C10, 1-8
c12, 1-8
C2,1-8
C3, 1-8
C4, 1-8
C6, 1-8
Cable lLoss, 11-23
cables, 1-2
(CAL), 11-22
CALCulate, 10-4, 12-3, 12-4, 12-b, 12-6, 12-7
Calibrate Cable , 11-23
calibration
full band, 12-21
reflection, example program, 8-36
transmission, example program, 8-34
CALibration, 10-4, 12-7
Cal Kit K6 11-24

Cal on OFF 11-27
case-sensitivity, 10-8
CATalog, 12-20
Center, 11-8
CH1AFWD, 6-22
CH1BFWD, 6-22
CH1FDATA, 6-22
CH1RFWD, 6-22
CH1SCORR1, 6-24
CH1SCORR2, 6-24
CH1SCORRS3, 6-24
CH1SDATA, 6-22

Index-4

CH1SMEM, 6-22
CH2AFWD, 6-22
CH2BFWD, 6-22
CH2FDATA, 6-22
CH2RFWD, 6-22
CH2SCORR1, 6-24
CH2SCORR2, 6-24
CH2SCORRS3, 6-24
CH2SDATA, 6-22
CH2SMEM, 6-22
[CHAN D). 116
AN D). 116
change directory, 12-18, 12-19
Chan BFF, 11-7
<char>, 10-11
character data, 4-4
character parameters, 10-11
circle

to draw, 12-14
clear graphics, 12-14
clearing registers, b-4
Clear Program, 11-34
clock, 11-35

Clock Format K 11-35

Clock Off 6 11-19
*CLS, 2-5, 5-4, 10-17
colons

use of, 10-5, 10-16
Color , 11-31, 11-32
color of pen, 12-14
command abbreviation, 10-8
command errors, 14-3
command parser, 1-14
commands

bus management, 1-6

device, 1-6

IEEE 488.2, 10-17

overlapped, 2-3

SCPI standard, 13-3

sequential, 2-2
command sending, 1-6
command tree, 10-3
commas

use of, 10-10, 10-16
condition register, b-4
CONFigure, 12-8
Configure Ext Disk 6 11-28

Index-b

Configure VOL RAM, 11-28
configuring measurements, 8-5

Connector € 11-24
Connector Length K 11-24
Connector Model |, 11-24
Continue, 11-34

Continuous, 11-12
control

passing, 3-2
controller

active, defined, 1-2

defined, 1-2

multiple, 1-7

system, defined, 1-2
controller capabilities, 1-9
control lines, 1-4

Conversion Loss | 116

Copy All Files K 11-29
copy file, 12-19
Copy File K 11-29
corrected data arrays, 6-25
corrected memory arrays, 6-25
CORRection, 12-21
correction arrays

up- and down-loading, example program, 8-40
COUPle, 11-11
coupling, 11-11
Current Size, 11-28
customized procedure

example program, 8-75
cW, 118

data
block, 4-5
character, 4-4
expression, 4-4
numeric, 4-3
raw, 6-22
string, 4-4
Data , 11-18
DATA, 12-31
Data and Memory , 11-18

data arrays
corrected, 6-25

Index-6

mnemonics, 6-22
data bus, 1-4
data encoding, 4-7
data format, 12-156

Data/Mem, 11-18
Data - > Mem 6 11-18

Data on OFF K 11-27
data rate, 1-7
data trace, 12-3
data transfer, 4-2
in ASCII, example program, 8-24
in REAL format, example program, 8-27
using INTEGER format, example program, 8-30
data transfer size, 6-9
data types, 4-2, 4-3

Day

set clock, 11-35
DC1, 1-8
DCL, 1-10, 1-12

Default Cal ,6 11-22, 11-23
Default Type-N(f), 11-24
Define Graph, 11-33
Define Hardcopy , 11-33
Define Plotter K 11-32
Define Printer K 11-31

Define Save 6 11-27
definite length blocks, 4-5, 10-14
delay

electrical, 6-26

Delay
format, 11-21

Delay Aperture K 11-26
Delete All Files 1129
Delete All Limits, 11-18
Delete File K 11-29

Delete Limit, 11-18
delete program, 12-20
delimiters, 10-13

Delta Mkr 6 11-16
Detection Options, 11-6

Detector Zero , 11-25
device clear, 1-10, 1-12

Index-7

device commands, 1-6
device-specific errors, 14-12
device status register set, 5-15
DIAGnostic, 12-9
Directory Utilities, 11-30
direct-read method of accessing registers, 5-6
discrete parameters, 10-11
Disp Freq Resolution, 11-9
DISPlay, 10-4, 12-12, 12-13, 12-14, 12-15
(DISPLAY), 11-18
display window

pixel coordinates, 12-13

width and height, 12-14

Distance, 11-12

Dither , 11-13
double quotes
use of, 10-13
download an IBASIC program, 12-20
draw
circle, 12-14
line, 12-14
rectangle, 12-14
DTR/DSR , 11-31

E2, 1-8

Edit Limit, 11-19
electrical delay, 6-26
Electrical Delay 6 11-14
enable register, 5-5
encoding data, 4-2, 4-7

End Frequency , 11-19

End Limit 6 11-19
end or identify
control line, 1-5
EOI, 1-5
error coefficient arrays, 6-23
error correction, 6-23
error messages, 12-30, 12-31, 14-2
error queue, 1-14
to query, 12-30, 12-31
errors
command, 14-3
device-specific, 14-12
execution, 14-7
query, 14-14
*ESE, 10-17

Index-8

*ESE?, 5-18, 10-17
*ESR?, 5-18, 10-17
event register, 5-4
example program
ASCDATA, 8-24
FAST_PRT, 8-62
GRAPHICS, 8-75
INTDATA, 8-30
LEARNSTR, 8-49
LIMITEST, 8-9
LOADCALS, 8-40
MARKERS, 8-14
PASSCTRL, 8-59
PRINTPLT, 8-56
REFLCAL, 8-36
SAVERCL, 8-52
SETUP, 8-6
SRQ, 8-65
TRANCAL, 8-34
example programs, 8-2-81
execute an IBASIC command, 12-20
execution errors, 14-7
expression data, 4-4

Ext Disk, 11-28
External CRT Adjust, 11-36
External Disk ,6 11-28

External Point
trigger, 11-12
External Sweep
trigger, 11-12
Ext Ref 11-12

FAST_PRT example program, 8-62
FastRecall on OFF, 11-30

Fault Location, 11-6, 11-22
Fault Location, calibration, 11-23
Fault Loc Frequency, 11-8
Fault Window, 11-26

Feet , 11-12
file copy, 12-19

File Type bin ASCIT K 11-28
File Utilities, 11-29
Fine , 11-26

Index-9

Flatness, 11-16
font

label, 12-14
FORMat, 10-4, 12-15
(FORMAT), 11-21
Format Disk ,6 11-29
format of numerics, 10-11
formatted arrays, 6-27
formatting, 6-27
(FREQ), 118
FREQuency, 12-23
frequency, stop

how to set, 10-10
Frequency Sweep , 11-11
front panel keycodes, 9-2
Full

IBASIC display, 11-34
Full Band Cal , 11-22, 11-23

general status register model, 5-3
go to local, 1-10
Graph , 11-33
graphics

buffering, 12-14

to clear, 12-14

user, 7-2
GRAPhics, 12-13, 12-14
GRAPHICS

example program, 8-75
graphics buffer, 7-5
Graticule ON off 6 11-20, 11-33
GTL, 1-10

handshake lines, 1-4
HARD COPY), 11-31
Hardcopy Address, 11-31
Hardcopy All K 11-35
hardcopy output

example program, 8-56
Hardcopy Screen , 11-356
HCOPy, 10-4, 12-16
Hold , 11-12
Horizontal Back Porch K 11-36

Horizontal Frnt Porch,K 11-36

Index-10

Hour
set clock, 11-35

HP 871 B Address, 11-34
HP-IB addresses, 1-2

HP-IB cables, 1-2

HP-1IB Echo, 11-34

HP-IB queues, 1-13

HP-IB requirements, 1-7

IBASIC, 8-2
IBASIC |, 11-34

IBASIC Display, 11-34
IBASIC program

to delete, 12-20

to download, 12-20

to load a value, 12-20

to select, 12-20
*IDN?, 10-17
IEEE 488.2 common commands, 10-17
IFC, 1-4, 1-10
Imaginary

format, 11-21
Impedance Magnitude

format, 11-21
implied mnemonics, 10-9

how identified in this manual, 1-3
implied variable, 10-9
implied variables

how identified in this manual, 1-3
indefinite block length, 4-6
indefinite length blocks, 10-14
INITiate, 10-4, 12-17
INITIATE, 10-9
input queue, 1-13
Instrument BASIC, 8-2
Inst State 0N off, 11-27
INTDATA

example program, 8-30
INTeger, 4-7
interface capabilities, 1-8
interface clear, 1-4, 1-10
Internal

trigger, 11-12
Internal 3.5" Disk, 11-28
internal measurement arrays, 6-21

Index-11

L. L4, 18
label
to draw, 12-14
label font, 12-14
Landscape , 11-31
language, 12-16
LEO, 1-8
LEARNSTR
example program, 8-49
learn string, 12-30, 12-31
example program, 8-49
Level , 11-10
LIMit, 12-3, 12-4
limitations
length of HP-IB cables, 1-7
number of devices, 1-7
LIMITEST
example program, 8-9
limit fail register set, 5-15
Limit Line 11-18

Limit Line BN off,6 11-19
limit lines

example program, 8-9
Limit Test on OFF, 11-19
line

to draw, 12-14
Lin Mag 6 11-21
listener

defined, 1-2
List Trace Values,K 11-33
LLO, 1-11
load a value in an IBASIC program, 12-20
LOADCALS

example program, 8-40
local lockout, 1-11
Log Mag , 11-21

Lower

IBASIC display, 11-34
lower-case

use of, 10-15
lower-case lettering, 10-8
Low Pass, 11-8
*LRN?, 10-17
LRN?, 12-30, 12-31
LRNLong?, 12-30, 12-31

Index-12

M Mag dBmV, 11-21
Mag dBuV, 11-21
Mag dBV , 11-21
Manual Z, 11-24
Manual Zero , 11-25

Margin
hardcopy, 11-32
MARKer, 12-4, 12-6

(MARKER), 11-15

Marker Functions K 11-16
Marker Math ,6 11-16

Marker - > Center,h 11-16
Marker > Flec Delay 11-16

Marker - > Reference, 11-16
MARKERS

example program, 8-14
Marker Search, 11-16

math
trace, 6-26
MATH, 12-7

Math Off 6 11-16
Maximum , 11-26
MAXimum, 10-10

Max Limit 6 11-19

Max Search, 11-16
Measure Cable , 11-23

Measure Connector, 11-24
measurement

basic setup example program, 8-6
measurement arrays

internal, 6-21
measurements

to configure, 8-5
measurement setup

example program, 8-6
Measure Standard, 11-22, 11-24
measuring status register set, 5-19

Medium, 11-26
Memory , 11-18

memory allocation, 12-20
memory arrays

Index-13

corrected, 6-25

(MENU), 11-12

message exchange, 1-13
messages

error, 12-30, 12-31, 14-2
message transfer scheme, 1-7
message window

clear current, 12-13

enable/disable, 12-13

off, 12-13

remove user-defined, 12-13

user-defined, 12-13

Meters 6 11-12
Minimum , 11-26
MINimum, 10-10
Min Limit , 11-19
Min Search, 11-16
Minute

set clock, 11-35
Mkr Limit ON off 6 11-19
Mkr Limits 6 11-19
Mkr —> Max,K 11-16
Mkr —> Min, 11-16
Ukr Symbol, 11-33

Mkr Table 6 11-33
MMEMory, 10-4, 12-18, 12-19
mnemonics
implied, 10-9
implied, how identified in this manual, 1-3
Modify Size , 11-28
Monochrome , 11-31, 11-32
Month
set clock, 11-35
MultiNotch, 11-17

Multi Peak 6 11-17
Multi Peak Corr , 11-23

Multi Peak Threshold 6 11-23
multiple commands, 10-7
multiple controller capability, 1-7

Index-14

N HNarrow, 11-26
Narrowband Internal, 116
Next Min, 11-16
Next Peak ,h 11-16

None
IBASIC display, 11-34

Non-Vol RAM Disk K6 11-28
no pending operation, 2-4
Normalize , 11-18, 11-22

Notch , 11-17

NPO, 2-4

NR1, 10-11

NR2, 10-11

NR3, 10-11

<num>, 10-10

Number of Points K 11-12
numeric data, 4-3

numeric formats, 10-11
numeric parameters, 10-10

() offset and scale, 6-27

One Port
cal, 11-22
&<ON|OFF>, 10-12
*OPC, 2-4, 10-17
*OPC?, 2-4, 10-18
Operating Parameters, 11-35
operational status register set, 5-20
*OPT?, 10-18
options, 10-18
OUTPut, 10-4, 12-19
output queue, 1-14
overlapped commands, 2-3

P parallel poll, 1-11

parameters
block, 10-14
boolean, 10-12
character, 10-11
discrete, 10-11
numeric, 10-10
string, 10-13

parameter types, 10-10

parser

Index-15

command, 1-14
pass control, 3-2
PASSCTRL
example program, 8-59
passing control, 3-2
example program, 8-59
*PCB, 1-12, 10-18
pen, 11-32
move, 12-14
Phase
format, 11-21

Phase Offset, 11-14
pixel coordinates

display window, 12-13
plotting and printing

example program, 8-56
Polar

format, 11-21

Port Ext’s on OFF 1125
Portrait, 11-31

Power , 11-6
POWer, 12-19, 12-25

POWER]), 11-10

Power Sweep , 11-11

PPC, 1-11

PPD, 1-11

PPE, 1-11

PPU, 1-11

(PRESET), 11-2, 12-30, 12-31

Printer Resolution, 11-32
printing and plotting

example program, 8-56
PRINTPLT

example program, 8-56
Print Width A6 11-32
program

how to download, 12-20
PROGram, 10-4, 12-20
programming fundamentals, 1-9
programs

examples, 8-2-81
*PSC, 10-18
Pyr Sweep Range 11-10

Index-16

Q query errors, 14-14

query response generation, 1-15
query the error queue, 12-30, 12-31
questionable status register set, 5-16
queue

error, 1-14

input, 1-13

output, 1-14
queues, 1-13
quotes

use of, 10-13

R R, 116

Rx 117
ratio calculations, 6-23
raw data arrays, 6-22
readable ports, 12-11
Real
format, 11-21
REAL, 4-7
recalling and saving
example program, 8-52
Recall Program, 11-28

Recall State, 11-27
rectangle
to draw, 12-14

Reference Level 11-14

Reference Position, 11-14
REFLCAL
example program, 8-36
Reflection, 11-6
cal, 11-22
reflection calibration
example program, 8-36
Refl Port Extension, 11-26
register model
status, 5-3
registers, b-2
how to use, 5-6
register sets, 5-10
remote enable, 1-11
control line, 1-5
REN, 1-5, 1-11
Rename File K 11-29

Re-Save Program 6 11-28

Index-17

Re-Save State 11-27
Response
cal, 11-22
Response & Isolation
cal, 11-22
Restart Average 11-26
Restore Defaults
cal, 11-22
RF Filter Stats 6 11-16
RE ON off , 11-10
RLI, 1.8
RQS, 1-12
*RST, 2-5, 10-18
Run, 11-34

Save ASCII 11-27
Save AUTOST 11-28
Save Chan ,6 11-27

Save Program, 11-28
SAVERCL

example program, 8-52
(SAVE RECALL), 11-27
Save State, 11-27
saving and recalling

example program, 8-52
(SCALE), 11-14
scale and offset, 6-27
Scale/Div , 11-14
SCPI

defined, 10-2
SCPI conformance, 13-2
SCPI errors, 14-2
SCPI standard commands, 13-3
SDC, 1-12
Search left 11-17
Search 0ff 11-17

Search right 6 11-17
select a program, 12-20

Select Copy Port K 11-31
Select Disk 6 11-28

selected device clear, 1-12
semicolons

Index-18

use of, 10-7, 10-16
sending commands, 1-6
SENSe, 10-4, 12-21, 12-22, 12-23
sequential commands, 2-2
serial poll, 1-12
service request
control line, 1-5
service request method accessing registers, 5-7

Set Clock , 11-35

Set Pen Numbers 6 11-32
setting the stop frequency, 10-10
SETUP

example program, 8-6
SH1, 1-8
Show Clock, 11-19

Single, 11-12
single quotes
use of, 10-13
size
disk, 11-28
trace data transfer, 6-9
Smith chart 11-21

Smith Chart Z0 K6 11-25
softkey labels
user-defined, 12-13
SOURce, 10-4, 12-25
source menu, 11-12
spaces
use of, 10-10, 10-16
Span , 11-8
SPD, 1-12
SPE, 1-12
Specify Length,K 11-23
Split Display , 11-19
Spur Avoid, 11-13

Spur Avoid Options, 11-13
SR1, 1-8

*SRE, 10-18

*SRE?, 10-18

SRL , 11-6, 11-22

SRL Cable Scan, 11-12
SRQ, 1-5, 5-7
example program, 8-65
standard event status register, 5-3
standard event status register set, 5-17

Index-19

Start , 11-8
copy, 11-31
Start Distance, 11-12

Start Power , 11-10

Statistics, 11-16

STATus, 10-5, 12-25, 12-26, 12-27, 12-28
PRESet Settings, 5-21

status byte register, 5-3, 5-12

status register model, 5-3

status registers, b-2

*STB?, 10-19

Step , 11-34

Stop , 11-8

Stop Distance , 11-12
stop frequency

how to set, 10-10
Stop Power 11-10
<string>, 10-13
string data, 4-4
string parameters, 10-13
subsystems, 10-3
SWAPped, 12-15
SWEep, 12-23

SWEEP), 11-11

Sweep Time, 11-11
Sweep Time AUTO Man, 11-11
SWR, 11-21
synchronizing, 2-2
syntax summary and conventions, 10-15
SYSTem, 10-5, 12-29, 12-30, 12-31
System Bandwidth K6 11-26
System Config 6 11-35
system controller

defined, 1-2
System Controller,K 11-34
(SYSTEM OPTIONS), 11-34

Index-20

T T6, 1-8
take control talker, 1-12
talker
defined, 1-2

Talker Listener b 11-34
Target Search, 11-17

Target Value, 11-17
TCT, 1-12

TEO, 1-8

TEST, 12-31

Title and Clock , 11-19

Title + Clk ON off 11-20, 11-33
TRACe, 10-b, 12-31
Trace Data, 11-33
trace data transfer size, 6-9
trace math, 12-7
trace math operation, 6-26
Tracking on OFF 11-17
TRANCAL
example program, 8-34
transferring data, 4-2
using INTEGER format, example program, 8-30
transferring data in ASCII
example program, 8-24
transferring data in REAL format
example program, 8-27
transform, 6-26
transition registers, b-4
transmission calibration
example program, 8-34
Transmissn, 11-6
cal, 11-22
Trans Port Extension , 11-25
*TRG, 10-19
trigger, 12-17
Trigger , 11-12
TRIGger, 10-5, 12-32
Trigger Source 11-12
*TST?, 10-19
Type-F,6 11-25

Type-N{m) , 11-24

Index-21

U Upper

IBASIC display, 11-34
upper-case

use of, 10-15
upper-case lettering, 10-8
User Defined, 11-25
user-defined message, 12-13
user graphics

example program, 8-75
using graphics, 7-2

V variable
implied, 10-9
variables
implied, how identified in this manual, 1-3

Velocity Factor , 11-23, 11-25
Vertical Back Porch,6 11-36
Vertical Frnt Porch, 11-36
Volatile RAM Disk,K6 11-28

W *WAIL 2-4, 8-6, 10-19
Wide , 11-26
WINDow, 12-13, 12-14, 12-15
WINDowl, 7-2
WINDow10, 7-2
WINDow2, 7-2
window geometry, 7-4
window queries, 7-4

X X, 117
Xon/Xoff , 11-31
X/Y 117

Y Y, 117
Y-Axis Lbl DN off K 11-20
Y-Axis Lbl rel ABS 6 11-20

Year
set clock, 11-35

Y/%, 117

Index-22

7. Z cutoff Frequency K 11-24
Zeroing
auto, 11-25, 12-7
manual, 11-25

Index-23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

